|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 41: |
Line 44: |
|
coloured_jones_3 = <math>q^{54}-3 q^{53}+2 q^{52}+q^{51}-4 q^{49}+6 q^{48}+3 q^{47}-18 q^{46}-2 q^{45}+44 q^{44}+7 q^{43}-92 q^{42}-30 q^{41}+161 q^{40}+86 q^{39}-244 q^{38}-173 q^{37}+306 q^{36}+307 q^{35}-358 q^{34}-437 q^{33}+356 q^{32}+571 q^{31}-324 q^{30}-668 q^{29}+256 q^{28}+733 q^{27}-175 q^{26}-752 q^{25}+78 q^{24}+737 q^{23}+24 q^{22}-696 q^{21}-119 q^{20}+615 q^{19}+220 q^{18}-526 q^{17}-280 q^{16}+389 q^{15}+338 q^{14}-270 q^{13}-328 q^{12}+131 q^{11}+301 q^{10}-38 q^9-222 q^8-38 q^7+155 q^6+53 q^5-78 q^4-53 q^3+34 q^2+34 q-10-17 q^{-1} +3 q^{-2} +5 q^{-3} + q^{-4} -3 q^{-5} + q^{-6} </math> | |
|
coloured_jones_3 = <math>q^{54}-3 q^{53}+2 q^{52}+q^{51}-4 q^{49}+6 q^{48}+3 q^{47}-18 q^{46}-2 q^{45}+44 q^{44}+7 q^{43}-92 q^{42}-30 q^{41}+161 q^{40}+86 q^{39}-244 q^{38}-173 q^{37}+306 q^{36}+307 q^{35}-358 q^{34}-437 q^{33}+356 q^{32}+571 q^{31}-324 q^{30}-668 q^{29}+256 q^{28}+733 q^{27}-175 q^{26}-752 q^{25}+78 q^{24}+737 q^{23}+24 q^{22}-696 q^{21}-119 q^{20}+615 q^{19}+220 q^{18}-526 q^{17}-280 q^{16}+389 q^{15}+338 q^{14}-270 q^{13}-328 q^{12}+131 q^{11}+301 q^{10}-38 q^9-222 q^8-38 q^7+155 q^6+53 q^5-78 q^4-53 q^3+34 q^2+34 q-10-17 q^{-1} +3 q^{-2} +5 q^{-3} + q^{-4} -3 q^{-5} + q^{-6} </math> | |
|
coloured_jones_4 = <math>q^{88}-3 q^{87}+2 q^{86}+q^{85}-4 q^{84}+11 q^{83}-11 q^{82}+4 q^{81}-5 q^{80}-19 q^{79}+53 q^{78}-14 q^{77}+2 q^{76}-53 q^{75}-89 q^{74}+171 q^{73}+87 q^{72}+50 q^{71}-249 q^{70}-426 q^{69}+308 q^{68}+509 q^{67}+495 q^{66}-514 q^{65}-1405 q^{64}-34 q^{63}+1157 q^{62}+1830 q^{61}-203 q^{60}-2854 q^{59}-1404 q^{58}+1226 q^{57}+3742 q^{56}+1236 q^{55}-3775 q^{54}-3345 q^{53}+164 q^{52}+5079 q^{51}+3213 q^{50}-3517 q^{49}-4688 q^{48}-1478 q^{47}+5204 q^{46}+4652 q^{45}-2484 q^{44}-4930 q^{43}-2834 q^{42}+4445 q^{41}+5178 q^{40}-1267 q^{39}-4377 q^{38}-3697 q^{37}+3230 q^{36}+5058 q^{35}+11 q^{34}-3336 q^{33}-4202 q^{32}+1649 q^{31}+4390 q^{30}+1312 q^{29}-1798 q^{28}-4177 q^{27}-124 q^{26}+3007 q^{25}+2152 q^{24}+30 q^{23}-3224 q^{22}-1407 q^{21}+1115 q^{20}+1924 q^{19}+1354 q^{18}-1546 q^{17}-1508 q^{16}-361 q^{15}+834 q^{14}+1466 q^{13}-152 q^{12}-708 q^{11}-711 q^{10}-81 q^9+753 q^8+266 q^7-30 q^6-343 q^5-261 q^4+172 q^3+120 q^2+105 q-55-107 q^{-1} +14 q^{-2} +7 q^{-3} +36 q^{-4} +2 q^{-5} -20 q^{-6} +3 q^{-7} -3 q^{-8} +5 q^{-9} + q^{-10} -3 q^{-11} + q^{-12} </math> | |
|
coloured_jones_4 = <math>q^{88}-3 q^{87}+2 q^{86}+q^{85}-4 q^{84}+11 q^{83}-11 q^{82}+4 q^{81}-5 q^{80}-19 q^{79}+53 q^{78}-14 q^{77}+2 q^{76}-53 q^{75}-89 q^{74}+171 q^{73}+87 q^{72}+50 q^{71}-249 q^{70}-426 q^{69}+308 q^{68}+509 q^{67}+495 q^{66}-514 q^{65}-1405 q^{64}-34 q^{63}+1157 q^{62}+1830 q^{61}-203 q^{60}-2854 q^{59}-1404 q^{58}+1226 q^{57}+3742 q^{56}+1236 q^{55}-3775 q^{54}-3345 q^{53}+164 q^{52}+5079 q^{51}+3213 q^{50}-3517 q^{49}-4688 q^{48}-1478 q^{47}+5204 q^{46}+4652 q^{45}-2484 q^{44}-4930 q^{43}-2834 q^{42}+4445 q^{41}+5178 q^{40}-1267 q^{39}-4377 q^{38}-3697 q^{37}+3230 q^{36}+5058 q^{35}+11 q^{34}-3336 q^{33}-4202 q^{32}+1649 q^{31}+4390 q^{30}+1312 q^{29}-1798 q^{28}-4177 q^{27}-124 q^{26}+3007 q^{25}+2152 q^{24}+30 q^{23}-3224 q^{22}-1407 q^{21}+1115 q^{20}+1924 q^{19}+1354 q^{18}-1546 q^{17}-1508 q^{16}-361 q^{15}+834 q^{14}+1466 q^{13}-152 q^{12}-708 q^{11}-711 q^{10}-81 q^9+753 q^8+266 q^7-30 q^6-343 q^5-261 q^4+172 q^3+120 q^2+105 q-55-107 q^{-1} +14 q^{-2} +7 q^{-3} +36 q^{-4} +2 q^{-5} -20 q^{-6} +3 q^{-7} -3 q^{-8} +5 q^{-9} + q^{-10} -3 q^{-11} + q^{-12} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 50: |
Line 53: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 111]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 111]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[8, 14, 9, 13], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[8, 14, 9, 13], |
Line 70: |
Line 73: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 111]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_111_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 111]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_111_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 111]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 111]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 111]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 111]][t]</nowiki></pre></td></tr> |