|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 9 | |
|
n = 9 | |
Line 41: |
Line 44: |
|
coloured_jones_4 = <math> q^{-8} -3 q^{-9} +3 q^{-10} +4 q^{-11} -8 q^{-12} +2 q^{-13} -10 q^{-14} +21 q^{-15} +25 q^{-16} -44 q^{-17} -17 q^{-18} -45 q^{-19} +95 q^{-20} +138 q^{-21} -108 q^{-22} -139 q^{-23} -231 q^{-24} +236 q^{-25} +503 q^{-26} -38 q^{-27} -377 q^{-28} -809 q^{-29} +219 q^{-30} +1158 q^{-31} +466 q^{-32} -473 q^{-33} -1785 q^{-34} -269 q^{-35} +1751 q^{-36} +1385 q^{-37} -107 q^{-38} -2731 q^{-39} -1158 q^{-40} +1900 q^{-41} +2279 q^{-42} +627 q^{-43} -3221 q^{-44} -2008 q^{-45} +1606 q^{-46} +2768 q^{-47} +1373 q^{-48} -3202 q^{-49} -2515 q^{-50} +1093 q^{-51} +2809 q^{-52} +1921 q^{-53} -2790 q^{-54} -2672 q^{-55} +459 q^{-56} +2498 q^{-57} +2274 q^{-58} -2054 q^{-59} -2528 q^{-60} -252 q^{-61} +1859 q^{-62} +2382 q^{-63} -1071 q^{-64} -2026 q^{-65} -862 q^{-66} +956 q^{-67} +2086 q^{-68} -131 q^{-69} -1198 q^{-70} -1052 q^{-71} +96 q^{-72} +1364 q^{-73} +365 q^{-74} -364 q^{-75} -743 q^{-76} -328 q^{-77} +572 q^{-78} +330 q^{-79} +77 q^{-80} -284 q^{-81} -281 q^{-82} +118 q^{-83} +111 q^{-84} +112 q^{-85} -40 q^{-86} -102 q^{-87} +7 q^{-88} +5 q^{-89} +35 q^{-90} +4 q^{-91} -19 q^{-92} +2 q^{-93} -3 q^{-94} +5 q^{-95} + q^{-96} -3 q^{-97} + q^{-98} </math> | |
|
coloured_jones_4 = <math> q^{-8} -3 q^{-9} +3 q^{-10} +4 q^{-11} -8 q^{-12} +2 q^{-13} -10 q^{-14} +21 q^{-15} +25 q^{-16} -44 q^{-17} -17 q^{-18} -45 q^{-19} +95 q^{-20} +138 q^{-21} -108 q^{-22} -139 q^{-23} -231 q^{-24} +236 q^{-25} +503 q^{-26} -38 q^{-27} -377 q^{-28} -809 q^{-29} +219 q^{-30} +1158 q^{-31} +466 q^{-32} -473 q^{-33} -1785 q^{-34} -269 q^{-35} +1751 q^{-36} +1385 q^{-37} -107 q^{-38} -2731 q^{-39} -1158 q^{-40} +1900 q^{-41} +2279 q^{-42} +627 q^{-43} -3221 q^{-44} -2008 q^{-45} +1606 q^{-46} +2768 q^{-47} +1373 q^{-48} -3202 q^{-49} -2515 q^{-50} +1093 q^{-51} +2809 q^{-52} +1921 q^{-53} -2790 q^{-54} -2672 q^{-55} +459 q^{-56} +2498 q^{-57} +2274 q^{-58} -2054 q^{-59} -2528 q^{-60} -252 q^{-61} +1859 q^{-62} +2382 q^{-63} -1071 q^{-64} -2026 q^{-65} -862 q^{-66} +956 q^{-67} +2086 q^{-68} -131 q^{-69} -1198 q^{-70} -1052 q^{-71} +96 q^{-72} +1364 q^{-73} +365 q^{-74} -364 q^{-75} -743 q^{-76} -328 q^{-77} +572 q^{-78} +330 q^{-79} +77 q^{-80} -284 q^{-81} -281 q^{-82} +118 q^{-83} +111 q^{-84} +112 q^{-85} -40 q^{-86} -102 q^{-87} +7 q^{-88} +5 q^{-89} +35 q^{-90} +4 q^{-91} -19 q^{-92} +2 q^{-93} -3 q^{-94} +5 q^{-95} + q^{-96} -3 q^{-97} + q^{-98} </math> | |
|
coloured_jones_5 = <math> q^{-10} -3 q^{-11} +3 q^{-12} +4 q^{-13} -8 q^{-14} -2 q^{-15} +6 q^{-16} +12 q^{-18} +7 q^{-19} -33 q^{-20} -37 q^{-21} +22 q^{-22} +55 q^{-23} +82 q^{-24} +11 q^{-25} -145 q^{-26} -224 q^{-27} -54 q^{-28} +267 q^{-29} +477 q^{-30} +270 q^{-31} -394 q^{-32} -953 q^{-33} -729 q^{-34} +373 q^{-35} +1631 q^{-36} +1658 q^{-37} -80 q^{-38} -2379 q^{-39} -3040 q^{-40} -904 q^{-41} +2975 q^{-42} +5037 q^{-43} +2512 q^{-44} -3103 q^{-45} -7067 q^{-46} -5137 q^{-47} +2424 q^{-48} +9222 q^{-49} +8197 q^{-50} -908 q^{-51} -10595 q^{-52} -11714 q^{-53} -1536 q^{-54} +11480 q^{-55} +14870 q^{-56} +4438 q^{-57} -11246 q^{-58} -17656 q^{-59} -7573 q^{-60} +10499 q^{-61} +19516 q^{-62} +10432 q^{-63} -9024 q^{-64} -20712 q^{-65} -12892 q^{-66} +7498 q^{-67} +21044 q^{-68} +14737 q^{-69} -5739 q^{-70} -20919 q^{-71} -16091 q^{-72} +4156 q^{-73} +20295 q^{-74} +16953 q^{-75} -2520 q^{-76} -19340 q^{-77} -17535 q^{-78} +891 q^{-79} +18076 q^{-80} +17809 q^{-81} +828 q^{-82} -16377 q^{-83} -17823 q^{-84} -2746 q^{-85} +14306 q^{-86} +17498 q^{-87} +4643 q^{-88} -11685 q^{-89} -16664 q^{-90} -6553 q^{-91} +8704 q^{-92} +15262 q^{-93} +8050 q^{-94} -5441 q^{-95} -13152 q^{-96} -9040 q^{-97} +2285 q^{-98} +10483 q^{-99} +9150 q^{-100} +522 q^{-101} -7483 q^{-102} -8445 q^{-103} -2518 q^{-104} +4510 q^{-105} +6930 q^{-106} +3639 q^{-107} -1944 q^{-108} -5079 q^{-109} -3758 q^{-110} +121 q^{-111} +3113 q^{-112} +3212 q^{-113} +928 q^{-114} -1549 q^{-115} -2289 q^{-116} -1208 q^{-117} +451 q^{-118} +1356 q^{-119} +1054 q^{-120} +100 q^{-121} -642 q^{-122} -707 q^{-123} -263 q^{-124} +221 q^{-125} +370 q^{-126} +219 q^{-127} -14 q^{-128} -163 q^{-129} -136 q^{-130} -18 q^{-131} +54 q^{-132} +46 q^{-133} +29 q^{-134} -8 q^{-135} -30 q^{-136} -6 q^{-137} +7 q^{-138} + q^{-139} +3 q^{-140} +3 q^{-141} -5 q^{-142} - q^{-143} +3 q^{-144} - q^{-145} </math> | |
|
coloured_jones_5 = <math> q^{-10} -3 q^{-11} +3 q^{-12} +4 q^{-13} -8 q^{-14} -2 q^{-15} +6 q^{-16} +12 q^{-18} +7 q^{-19} -33 q^{-20} -37 q^{-21} +22 q^{-22} +55 q^{-23} +82 q^{-24} +11 q^{-25} -145 q^{-26} -224 q^{-27} -54 q^{-28} +267 q^{-29} +477 q^{-30} +270 q^{-31} -394 q^{-32} -953 q^{-33} -729 q^{-34} +373 q^{-35} +1631 q^{-36} +1658 q^{-37} -80 q^{-38} -2379 q^{-39} -3040 q^{-40} -904 q^{-41} +2975 q^{-42} +5037 q^{-43} +2512 q^{-44} -3103 q^{-45} -7067 q^{-46} -5137 q^{-47} +2424 q^{-48} +9222 q^{-49} +8197 q^{-50} -908 q^{-51} -10595 q^{-52} -11714 q^{-53} -1536 q^{-54} +11480 q^{-55} +14870 q^{-56} +4438 q^{-57} -11246 q^{-58} -17656 q^{-59} -7573 q^{-60} +10499 q^{-61} +19516 q^{-62} +10432 q^{-63} -9024 q^{-64} -20712 q^{-65} -12892 q^{-66} +7498 q^{-67} +21044 q^{-68} +14737 q^{-69} -5739 q^{-70} -20919 q^{-71} -16091 q^{-72} +4156 q^{-73} +20295 q^{-74} +16953 q^{-75} -2520 q^{-76} -19340 q^{-77} -17535 q^{-78} +891 q^{-79} +18076 q^{-80} +17809 q^{-81} +828 q^{-82} -16377 q^{-83} -17823 q^{-84} -2746 q^{-85} +14306 q^{-86} +17498 q^{-87} +4643 q^{-88} -11685 q^{-89} -16664 q^{-90} -6553 q^{-91} +8704 q^{-92} +15262 q^{-93} +8050 q^{-94} -5441 q^{-95} -13152 q^{-96} -9040 q^{-97} +2285 q^{-98} +10483 q^{-99} +9150 q^{-100} +522 q^{-101} -7483 q^{-102} -8445 q^{-103} -2518 q^{-104} +4510 q^{-105} +6930 q^{-106} +3639 q^{-107} -1944 q^{-108} -5079 q^{-109} -3758 q^{-110} +121 q^{-111} +3113 q^{-112} +3212 q^{-113} +928 q^{-114} -1549 q^{-115} -2289 q^{-116} -1208 q^{-117} +451 q^{-118} +1356 q^{-119} +1054 q^{-120} +100 q^{-121} -642 q^{-122} -707 q^{-123} -263 q^{-124} +221 q^{-125} +370 q^{-126} +219 q^{-127} -14 q^{-128} -163 q^{-129} -136 q^{-130} -18 q^{-131} +54 q^{-132} +46 q^{-133} +29 q^{-134} -8 q^{-135} -30 q^{-136} -6 q^{-137} +7 q^{-138} + q^{-139} +3 q^{-140} +3 q^{-141} -5 q^{-142} - q^{-143} +3 q^{-144} - q^{-145} </math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 49: |
Line 52: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 38]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 38]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[5, 14, 6, 15], X[7, 18, 8, 1], X[15, 8, 16, 9], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[5, 14, 6, 15], X[7, 18, 8, 1], X[15, 8, 16, 9], |
Line 67: |
Line 70: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 38]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_38_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 38]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_38_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 38]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 38]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 2, 3, {4, 7}, 2}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 2, 3, {4, 7}, 2}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 38]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 38]][t]</nowiki></pre></td></tr> |