A Sample KnotTheory` Session: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 34: | Line 34: | ||
<!--$$PD[K]$$--> |
<!--$$PD[K]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 4 | |
|||
in = <nowiki>PD[K]</nowiki> | |
|||
out= <nowiki>PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14], |
|||
X[12, 5, 13, 6], X[4, 9, 5, 10], X[16, 12, 1, 11], X[10, 16, 11, 15]]</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$${GaussCode[K], GaussCode[L]}$$--> |
<!--$${GaussCode[K], GaussCode[L]}$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 5 | |
|||
in = <nowiki>{GaussCode[K], GaussCode[L]}</nowiki> | |
|||
out= <nowiki>{GaussCode[1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7], |
|||
GaussCode[{1, -7, 2, -8}, {-5, 4, -6, 3}, |
|||
{7, -1, -4, 5, 8, -2, -3, 6}]}</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$DTCode[K]$$--> |
<!--$$DTCode[K]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 6 | |
|||
in = <nowiki>DTCode[K]</nowiki> | |
|||
out= <nowiki>DTCode[6, 8, 12, 14, 4, 16, 2, 10]</nowiki>}} |
|||
<!--END--> |
<!--END--> |
Revision as of 14:00, 18 September 2005
Setup
The first step is to load KnotTheory` as in Setup:
In[2]:= << KnotTheory`
Loading KnotTheory` (version of September 14, 2005, 13:37:36)...
8_17 |
K11a231 |
L8n6 |
T(7,5) |
Let us now introduce the four star knots that will accompany us throughout this session:
In[3]:=
|
K = Knot[8, 17];
K11 = Knot[11, Alternating, 231];
L = Link[8, NonAlternating, 6];
TK = TorusKnot[7,5];
|
Presentations
In[4]:=
|
PD[K]
|
Out[4]=
|
PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[8, 3, 9, 4], X[2, 13, 3, 14],
X[12, 5, 13, 6], X[4, 9, 5, 10], X[16, 12, 1, 11], X[10, 16, 11, 15]]
|
In[5]:=
|
{GaussCode[K], GaussCode[L]}
|
Out[5]=
|
{GaussCode[1, -4, 3, -6, 5, -1, 2, -3, 6, -8, 7, -5, 4, -2, 8, -7],
GaussCode[{1, -7, 2, -8}, {-5, 4, -6, 3},
{7, -1, -4, 5, 8, -2, -3, 6}]}
|
In[6]:=
|
DTCode[K]
|
Out[6]=
|
DTCode[6, 8, 12, 14, 4, 16, 2, 10]
|