The HOMFLY-PT Polynomial: Difference between revisions
No edit summary |
m (Reverted edit of 222.191.251.51, changed back to last version by Drorbn) |
||
Line 36: | Line 36: | ||
in = <nowiki>HOMFLYPT[Knot[8, 1]][a, z]</nowiki> | |
in = <nowiki>HOMFLYPT[Knot[8, 1]][a, z]</nowiki> | |
||
out= <nowiki> -2 4 6 2 2 2 4 2 |
out= <nowiki> -2 4 6 2 2 2 4 2 |
||
a - a |
a - a + a - z - a z - a z</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Line 47: | Line 47: | ||
in = <nowiki>Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]</nowiki> | |
in = <nowiki>Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]</nowiki> | |
||
out= <nowiki> -6 -5 -4 2 2 2 2 |
out= <nowiki> -6 -5 -4 2 2 2 2 |
||
2 |
2 + q - q + q - -- + -- - - - q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki>}} |
q q</nowiki>}} |
||
Line 58: | Line 58: | ||
in = <nowiki>Jones[K][q]</nowiki> | |
in = <nowiki>Jones[K][q]</nowiki> | |
||
out= <nowiki> -6 -5 -4 2 2 2 2 |
out= <nowiki> -6 -5 -4 2 2 2 2 |
||
2 |
2 + q - q + q - -- + -- - - - q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki>}} |
q q</nowiki>}} |
||
Line 76: | Line 76: | ||
In our parametrization of the <math>A_2</math> link invariant, it satisfies |
In our parametrization of the <math>A_2</math> link invariant, it satisfies |
||
<center><math>A_2(L)(q) = (-1)^c(q^2 |
<center><math>A_2(L)(q) = (-1)^c(q^2+1+q^{-2})H(L)(q^{-3},\,q-q^{-1})</math>,</center> |
||
where <math>L</math> is some knot or link and where <math>c</math> is the number of components of <math>L</math>. Let us verify this fact for the Whitehead link, [[L5a1]]: |
where <math>L</math> is some knot or link and where <math>c</math> is the number of components of <math>L</math>. Let us verify this fact for the Whitehead link, [[L5a1]]: |
||
Line 88: | Line 88: | ||
<!--$$Simplify[{ |
<!--$$Simplify[{ |
||
(-1)^(Length[Skeleton[L]]-1)(q^2 |
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q], |
||
A2Invariant[L][q] |
A2Invariant[L][q] |
||
}]$$--> |
}]$$--> |
||
Line 95: | Line 95: | ||
n = 9 | |
n = 9 | |
||
in = <nowiki>Simplify[{ |
in = <nowiki>Simplify[{ |
||
(-1)^(Length[Skeleton[L]]-1)(q^2 |
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q], |
||
A2Invariant[L][q] |
A2Invariant[L][q] |
||
}]</nowiki> | |
}]</nowiki> | |
||
out= <nowiki> -12 -8 -6 2 -2 2 4 6 |
out= <nowiki> -12 -8 -6 2 -2 2 4 6 |
||
{2 - q |
{2 - q + q + q + -- + q + q + q + q , |
||
4 |
4 |
||
q |
q |
||
-12 -8 -6 2 -2 2 4 6 |
-12 -8 -6 2 -2 2 4 6 |
||
2 - q |
2 - q + q + q + -- + q + q + q + q } |
||
4 |
4 |
||
q</nowiki>}} |
q</nowiki>}} |
Revision as of 05:40, 12 April 2007
The HOMFLY-PT polynomial (see [HOMFLY] and [PT]) of a knot or link is defined by the skein relation
and by the initial condition =1.
KnotTheory`
knows about the HOMFLY-PT polynomial:
(For In[1] see Setup)
|
|
Thus, for example, here's the HOMFLY-PT polynomial of the knot 8_1:
In[3]:=
|
K = Knot[8, 1];
|
In[4]:=
|
HOMFLYPT[Knot[8, 1]][a, z]
|
Out[4]=
|
-2 4 6 2 2 2 4 2
a - a + a - z - a z - a z
|
It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at and and to the Conway polynomial at . Indeed,
In[5]:=
|
Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]
|
Out[5]=
|
-6 -5 -4 2 2 2 2
2 + q - q + q - -- + -- - - - q + q
3 2 q
q q
|
In[6]:=
|
Jones[K][q]
|
Out[6]=
|
-6 -5 -4 2 2 2 2
2 + q - q + q - -- + -- - - - q + q
3 2 q
q q
|
In[7]:=
|
{HOMFLYPT[K][1, z], Conway[K][z]}
|
Out[7]=
|
2 2
{1 - 3 z , 1 - 3 z }
|
8_1 |
L5a1 |
In our parametrization of the link invariant, it satisfies
where is some knot or link and where is the number of components of . Let us verify this fact for the Whitehead link, L5a1:
In[8]:=
|
L = Link[5, Alternating, 1];
|
In[9]:=
|
Simplify[{
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
A2Invariant[L][q]
}]
|
Out[9]=
|
-12 -8 -6 2 -2 2 4 6
{2 - q + q + q + -- + q + q + q + q ,
4
q
-12 -8 -6 2 -2 2 4 6
2 - q + q + q + -- + q + q + q + q }
4
q
|
Other Software to Compute the HOMFLY-PT Polynomial
A C-based program running under windows by M. Ochiai can compute the HOMFLY-PT polynomial of certain knots and links with up to hundreds of crossings using "base tangle decompositions". His program, bTd, is available at [1].
References
[HOMFLY] ^ J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239-246.
[PT] ^ J. Przytycki and P. Traczyk, , Proc. Amer. Math. Soc. 100 (1987) 744-748.