Prime Links with a Non-Prime Component: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
{{Startup Note}} |
{{Startup Note}} |
||
<!--$$ |
<!--$$K31 = Knot[3, 1]; K41 = Knot[4, 1];$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{In| |
{{In| |
||
Line 14: | Line 14: | ||
<!--$$CompositeJones = |
<!--$$CompositeJones = |
||
Jones[#][q] & /@ {ConnectedSum[K31, K31], |
|||
ConnectedSum[K31, Mirror[K31]], |
|||
J31[q] J41[q], J31[1/q] J41[q]}]$$--> |
|||
ConnectedSum[Mirror[K31], Mirror[K31]], ConnectedSum[K31, K41], |
|||
ConnectedSum[Mirror[K31], K41], ConnectedSum[K41, K41]}$$--> |
|||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
Line 43: | Line 45: | ||
<!--$$SubLink[pd_PD, js_List] := Module[ |
<!--$$SubLink[pd_PD, js_List] := Module[ |
||
{k, t0, t, t1, t2, S, P |
{k, t0, t, t1, t2, S, P}, |
||
t0 = Flatten[List @@@ Skeleton[pd][[js]]]; |
t0 = Flatten[List @@@ Skeleton[pd][[js]]]; |
||
t = pd /. x_X :> Select[x, MemberQ[t0, #] &]; |
t = pd /. x_X :> Select[x, MemberQ[t0, #] &]; |
Revision as of 14:04, 3 July 2007
Let us find all (prime!) links in the Knot Atlas that have a non-prime component. Since the links listed in the Knot Atlas have at most 11 crossings, such a component may only be the sum of exactly two knots chosen among the trefoil, the figure eight knot, and their mirror images. The figure eight knot's mirror image is itself so we have five possibilities. Computing the Jones polynomial of each, we get:
(For In[1] see Setup)
In[2]:=
|
J31 = Jones[Knot[3, 1]]; J41 = Jones[Knot[4, 1]];
|
In[3]:=
|
CompositeJones =
Expand[{J31[q] J31[q], J31[q] J31[1/q], J31[1/q] J31[1/q],
J31[q] J41[q], J31[1/q] J41[q]}]
|
Out[3]=
|
-8 2 -6 2 2 -2 -3 -2 1 2 3
{q - -- + q - -- + -- + q , 3 - q + q - - - q + q - q ,
7 5 4 q
q q q
2 4 5 6 7 8
q + 2 q - 2 q + q - 2 q + q ,
-6 2 2 3 3 2
-1 - q + -- - -- + -- - -- + - + q,
5 4 3 2 q
q q q q
1 2 3 4 5 6
-1 + - + 2 q - 3 q + 3 q - 2 q + 2 q - q }
q
|
Now, we can use the following program that determines the PD form of a knot (or a link) made up of the selected component(s) of a certain link:
In[4]:=
|
SubLink[pd_PD, js_List] := Module[
{k, t0, t, t1, t2, S, P, T},
t0 = Flatten[List @@@ Skeleton[pd][[js]]];
t = pd /. x_X :> Select[x, MemberQ[t0, #] &];
t = DeleteCases[t, X[]];
k = 1;
While[
k <= Length[t],
If[ Length[t[[k]]] < 4,
t = Delete[t, k] /. (Rule @@ t[[k]]), ++k];
];
t1 = List @@ Union @@ t;
t2 = Thread[(t1) -> Range[Length[t1]]];
S = t /. t2;
P = If[S != PD[] && Length[S] >= 3, S, PD[Knot[0, 1]], S]
]
SubLink[pd_PD, j_] := SubLink[pd, {j}];
SubLink[L_, js_] := SubLink[PD[L], js];
|
Using SubLink[ ] and the Jones polynomials of the five composite knots mentioned above, we can find all links that have one of these as a component:
In[5]:=
|
NonPrimeComponentQ[L_] :=
Or @@ (MemberQ[CompositeJones, Jones[SubLink[L, #]][q]] & /@
Range[Length[Skeleton[L]]])
|
In[6]:=
|
Exceptions= Select[AllLinks[], NonPrimeComponentQ]
|
Out[6]=
|
{Link[10, Alternating, 38], Link[10, Alternating, 39],
Link[10, Alternating, 46], Link[10, NonAlternating, 35],
Link[10, NonAlternating, 36], Link[10, NonAlternating, 37],
Link[10, NonAlternating, 38], Link[10, NonAlternating, 39],
Link[11, Alternating, 91], Link[11, Alternating, 92],
Link[11, Alternating, 93], Link[11, Alternating, 95],
Link[11, Alternating, 121], Link[11, Alternating, 128],
Link[11, Alternating, 130], Link[11, NonAlternating, 110],
Link[11, NonAlternating, 111], Link[11, NonAlternating, 112],
Link[11, NonAlternating, 113], Link[11, NonAlternating, 114],
Link[11, NonAlternating, 115]}
|
Thus, there are 21 links in the Knot Atlas that have a non-prime component. The first eight of those are:
L10a38 |
L10a39 |
L10a46 |
L10n35 |
L10n36 |
L10n37 |
L10n38 |
L10n39 |