9 9: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- -->
<!-- <math>\text{Null}</math> -->
<!-- -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 9 |
n = 9 |
Line 44: Line 44:
coloured_jones_5 = <math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} +5 q^{-27} -7 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +8 q^{-32} +18 q^{-33} -4 q^{-34} -23 q^{-35} -20 q^{-36} -7 q^{-37} +12 q^{-38} +46 q^{-39} +25 q^{-40} -15 q^{-41} -40 q^{-42} -49 q^{-43} -22 q^{-44} +55 q^{-45} +70 q^{-46} +33 q^{-47} -17 q^{-48} -79 q^{-49} -89 q^{-50} +4 q^{-51} +77 q^{-52} +90 q^{-53} +56 q^{-54} -45 q^{-55} -125 q^{-56} -80 q^{-57} +10 q^{-58} +92 q^{-59} +126 q^{-60} +47 q^{-61} -80 q^{-62} -128 q^{-63} -95 q^{-64} +15 q^{-65} +139 q^{-66} +143 q^{-67} +26 q^{-68} -104 q^{-69} -178 q^{-70} -103 q^{-71} +87 q^{-72} +201 q^{-73} +146 q^{-74} -29 q^{-75} -218 q^{-76} -215 q^{-77} +3 q^{-78} +225 q^{-79} +253 q^{-80} +47 q^{-81} -231 q^{-82} -308 q^{-83} -74 q^{-84} +240 q^{-85} +340 q^{-86} +115 q^{-87} -246 q^{-88} -388 q^{-89} -139 q^{-90} +251 q^{-91} +416 q^{-92} +181 q^{-93} -248 q^{-94} -453 q^{-95} -207 q^{-96} +233 q^{-97} +458 q^{-98} +249 q^{-99} -200 q^{-100} -458 q^{-101} -275 q^{-102} +158 q^{-103} +424 q^{-104} +288 q^{-105} -98 q^{-106} -372 q^{-107} -288 q^{-108} +48 q^{-109} +305 q^{-110} +254 q^{-111} -3 q^{-112} -218 q^{-113} -221 q^{-114} -29 q^{-115} +160 q^{-116} +157 q^{-117} +37 q^{-118} -83 q^{-119} -118 q^{-120} -40 q^{-121} +53 q^{-122} +65 q^{-123} +29 q^{-124} -15 q^{-125} -40 q^{-126} -20 q^{-127} +8 q^{-128} +11 q^{-129} +13 q^{-130} +6 q^{-131} -9 q^{-132} -5 q^{-133} -5 q^{-135} + q^{-136} +10 q^{-137} -4 q^{-138} - q^{-139} +3 q^{-140} -5 q^{-141} - q^{-142} +5 q^{-143} -2 q^{-144} - q^{-145} +2 q^{-146} - q^{-147} - q^{-148} +2 q^{-149} - q^{-150} </math> |
coloured_jones_5 = <math> q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} +5 q^{-27} -7 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +8 q^{-32} +18 q^{-33} -4 q^{-34} -23 q^{-35} -20 q^{-36} -7 q^{-37} +12 q^{-38} +46 q^{-39} +25 q^{-40} -15 q^{-41} -40 q^{-42} -49 q^{-43} -22 q^{-44} +55 q^{-45} +70 q^{-46} +33 q^{-47} -17 q^{-48} -79 q^{-49} -89 q^{-50} +4 q^{-51} +77 q^{-52} +90 q^{-53} +56 q^{-54} -45 q^{-55} -125 q^{-56} -80 q^{-57} +10 q^{-58} +92 q^{-59} +126 q^{-60} +47 q^{-61} -80 q^{-62} -128 q^{-63} -95 q^{-64} +15 q^{-65} +139 q^{-66} +143 q^{-67} +26 q^{-68} -104 q^{-69} -178 q^{-70} -103 q^{-71} +87 q^{-72} +201 q^{-73} +146 q^{-74} -29 q^{-75} -218 q^{-76} -215 q^{-77} +3 q^{-78} +225 q^{-79} +253 q^{-80} +47 q^{-81} -231 q^{-82} -308 q^{-83} -74 q^{-84} +240 q^{-85} +340 q^{-86} +115 q^{-87} -246 q^{-88} -388 q^{-89} -139 q^{-90} +251 q^{-91} +416 q^{-92} +181 q^{-93} -248 q^{-94} -453 q^{-95} -207 q^{-96} +233 q^{-97} +458 q^{-98} +249 q^{-99} -200 q^{-100} -458 q^{-101} -275 q^{-102} +158 q^{-103} +424 q^{-104} +288 q^{-105} -98 q^{-106} -372 q^{-107} -288 q^{-108} +48 q^{-109} +305 q^{-110} +254 q^{-111} -3 q^{-112} -218 q^{-113} -221 q^{-114} -29 q^{-115} +160 q^{-116} +157 q^{-117} +37 q^{-118} -83 q^{-119} -118 q^{-120} -40 q^{-121} +53 q^{-122} +65 q^{-123} +29 q^{-124} -15 q^{-125} -40 q^{-126} -20 q^{-127} +8 q^{-128} +11 q^{-129} +13 q^{-130} +6 q^{-131} -9 q^{-132} -5 q^{-133} -5 q^{-135} + q^{-136} +10 q^{-137} -4 q^{-138} - q^{-139} +3 q^{-140} -5 q^{-141} - q^{-142} +5 q^{-143} -2 q^{-144} - q^{-145} +2 q^{-146} - q^{-147} - q^{-148} +2 q^{-149} - q^{-150} </math> |
coloured_jones_6 = <math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -5 q^{-31} +6 q^{-32} -8 q^{-33} -10 q^{-34} +5 q^{-35} +7 q^{-36} +12 q^{-37} -4 q^{-38} +18 q^{-39} -15 q^{-40} -31 q^{-41} -11 q^{-42} +24 q^{-44} +8 q^{-45} +61 q^{-46} +4 q^{-47} -42 q^{-48} -48 q^{-49} -45 q^{-50} -7 q^{-51} -9 q^{-52} +124 q^{-53} +70 q^{-54} +16 q^{-55} -43 q^{-56} -89 q^{-57} -93 q^{-58} -120 q^{-59} +117 q^{-60} +113 q^{-61} +129 q^{-62} +64 q^{-63} -18 q^{-64} -129 q^{-65} -276 q^{-66} -5 q^{-67} +14 q^{-68} +156 q^{-69} +182 q^{-70} +185 q^{-71} +5 q^{-72} -308 q^{-73} -113 q^{-74} -206 q^{-75} -13 q^{-76} +126 q^{-77} +355 q^{-78} +253 q^{-79} -124 q^{-80} -26 q^{-81} -357 q^{-82} -291 q^{-83} -164 q^{-84} +313 q^{-85} +420 q^{-86} +167 q^{-87} +284 q^{-88} -282 q^{-89} -481 q^{-90} -558 q^{-91} +50 q^{-92} +373 q^{-93} +381 q^{-94} +683 q^{-95} +5 q^{-96} -478 q^{-97} -885 q^{-98} -304 q^{-99} +139 q^{-100} +440 q^{-101} +1024 q^{-102} +374 q^{-103} -325 q^{-104} -1077 q^{-105} -618 q^{-106} -162 q^{-107} +388 q^{-108} +1255 q^{-109} +707 q^{-110} -133 q^{-111} -1175 q^{-112} -853 q^{-113} -425 q^{-114} +327 q^{-115} +1413 q^{-116} +964 q^{-117} +11 q^{-118} -1256 q^{-119} -1040 q^{-120} -623 q^{-121} +315 q^{-122} +1556 q^{-123} +1178 q^{-124} +109 q^{-125} -1348 q^{-126} -1223 q^{-127} -800 q^{-128} +306 q^{-129} +1676 q^{-130} +1385 q^{-131} +244 q^{-132} -1359 q^{-133} -1377 q^{-134} -1002 q^{-135} +183 q^{-136} +1662 q^{-137} +1543 q^{-138} +467 q^{-139} -1164 q^{-140} -1371 q^{-141} -1168 q^{-142} -86 q^{-143} +1395 q^{-144} +1506 q^{-145} +681 q^{-146} -767 q^{-147} -1099 q^{-148} -1139 q^{-149} -358 q^{-150} +923 q^{-151} +1189 q^{-152} +713 q^{-153} -353 q^{-154} -653 q^{-155} -860 q^{-156} -451 q^{-157} +465 q^{-158} +722 q^{-159} +528 q^{-160} -103 q^{-161} -256 q^{-162} -483 q^{-163} -357 q^{-164} +181 q^{-165} +333 q^{-166} +280 q^{-167} -25 q^{-168} -37 q^{-169} -199 q^{-170} -207 q^{-171} +62 q^{-172} +113 q^{-173} +110 q^{-174} -18 q^{-175} +36 q^{-176} -58 q^{-177} -102 q^{-178} +25 q^{-179} +25 q^{-180} +33 q^{-181} -17 q^{-182} +38 q^{-183} -8 q^{-184} -46 q^{-185} +12 q^{-186} + q^{-187} +7 q^{-188} -12 q^{-189} +22 q^{-190} +2 q^{-191} -18 q^{-192} +7 q^{-193} -2 q^{-194} +2 q^{-195} -7 q^{-196} +8 q^{-197} +2 q^{-198} -7 q^{-199} +4 q^{-200} - q^{-201} + q^{-202} -2 q^{-203} + q^{-204} + q^{-205} -2 q^{-206} + q^{-207} </math> |
coloured_jones_6 = <math> q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -5 q^{-31} +6 q^{-32} -8 q^{-33} -10 q^{-34} +5 q^{-35} +7 q^{-36} +12 q^{-37} -4 q^{-38} +18 q^{-39} -15 q^{-40} -31 q^{-41} -11 q^{-42} +24 q^{-44} +8 q^{-45} +61 q^{-46} +4 q^{-47} -42 q^{-48} -48 q^{-49} -45 q^{-50} -7 q^{-51} -9 q^{-52} +124 q^{-53} +70 q^{-54} +16 q^{-55} -43 q^{-56} -89 q^{-57} -93 q^{-58} -120 q^{-59} +117 q^{-60} +113 q^{-61} +129 q^{-62} +64 q^{-63} -18 q^{-64} -129 q^{-65} -276 q^{-66} -5 q^{-67} +14 q^{-68} +156 q^{-69} +182 q^{-70} +185 q^{-71} +5 q^{-72} -308 q^{-73} -113 q^{-74} -206 q^{-75} -13 q^{-76} +126 q^{-77} +355 q^{-78} +253 q^{-79} -124 q^{-80} -26 q^{-81} -357 q^{-82} -291 q^{-83} -164 q^{-84} +313 q^{-85} +420 q^{-86} +167 q^{-87} +284 q^{-88} -282 q^{-89} -481 q^{-90} -558 q^{-91} +50 q^{-92} +373 q^{-93} +381 q^{-94} +683 q^{-95} +5 q^{-96} -478 q^{-97} -885 q^{-98} -304 q^{-99} +139 q^{-100} +440 q^{-101} +1024 q^{-102} +374 q^{-103} -325 q^{-104} -1077 q^{-105} -618 q^{-106} -162 q^{-107} +388 q^{-108} +1255 q^{-109} +707 q^{-110} -133 q^{-111} -1175 q^{-112} -853 q^{-113} -425 q^{-114} +327 q^{-115} +1413 q^{-116} +964 q^{-117} +11 q^{-118} -1256 q^{-119} -1040 q^{-120} -623 q^{-121} +315 q^{-122} +1556 q^{-123} +1178 q^{-124} +109 q^{-125} -1348 q^{-126} -1223 q^{-127} -800 q^{-128} +306 q^{-129} +1676 q^{-130} +1385 q^{-131} +244 q^{-132} -1359 q^{-133} -1377 q^{-134} -1002 q^{-135} +183 q^{-136} +1662 q^{-137} +1543 q^{-138} +467 q^{-139} -1164 q^{-140} -1371 q^{-141} -1168 q^{-142} -86 q^{-143} +1395 q^{-144} +1506 q^{-145} +681 q^{-146} -767 q^{-147} -1099 q^{-148} -1139 q^{-149} -358 q^{-150} +923 q^{-151} +1189 q^{-152} +713 q^{-153} -353 q^{-154} -653 q^{-155} -860 q^{-156} -451 q^{-157} +465 q^{-158} +722 q^{-159} +528 q^{-160} -103 q^{-161} -256 q^{-162} -483 q^{-163} -357 q^{-164} +181 q^{-165} +333 q^{-166} +280 q^{-167} -25 q^{-168} -37 q^{-169} -199 q^{-170} -207 q^{-171} +62 q^{-172} +113 q^{-173} +110 q^{-174} -18 q^{-175} +36 q^{-176} -58 q^{-177} -102 q^{-178} +25 q^{-179} +25 q^{-180} +33 q^{-181} -17 q^{-182} +38 q^{-183} -8 q^{-184} -46 q^{-185} +12 q^{-186} + q^{-187} +7 q^{-188} -12 q^{-189} +22 q^{-190} +2 q^{-191} -18 q^{-192} +7 q^{-193} -2 q^{-194} +2 q^{-195} -7 q^{-196} +8 q^{-197} +2 q^{-198} -7 q^{-199} +4 q^{-200} - q^{-201} + q^{-202} -2 q^{-203} + q^{-204} + q^{-205} -2 q^{-206} + q^{-207} </math> |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_7 = |
computer_talk =
computer_talk =
<table>
<table>
Line 51: Line 51:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 9]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[7, 16, 8, 17], X[9, 18, 10, 1],
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 9]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[7, 16, 8, 17], X[9, 18, 10, 1],
X[17, 8, 18, 9], X[15, 10, 16, 11], X[5, 14, 6, 15], X[11, 2, 12, 3],
X[17, 8, 18, 9], X[15, 10, 16, 11], X[5, 14, 6, 15], X[11, 2, 12, 3],
X[13, 4, 14, 5]]</nowiki></pre></td></tr>
X[13, 4, 14, 5]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 9]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 9]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 12, 14, 16, 18, 2, 4, 10, 8]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 9]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, -2, -2, -2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 9]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 9]]&) /@ {
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 12, 14, 16, 18, 2, 4, 10, 8]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 9]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, -2, -2, -2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 9]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 9]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_9_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 9]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
}</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 9]][t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 3
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 9]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 3
-7 + -- - -- + - + 6 t - 4 t + 2 t
-7 + -- - -- + - + 6 t - 4 t + 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 9]][z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 8 z + 8 z + 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 9]][z]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 9]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 9]], KnotSignature[Knot[9, 9]]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{31, -6}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 8 z + 8 z + 2 z</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 9]][q]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 4 5 5 5 4 3 -4 -3
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 9]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 9]], KnotSignature[Knot[9, 9]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{31, -6}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 9]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 2 4 5 5 5 4 3 -4 -3
-q + --- - --- + -- - -- + -- - -- + -- - q + q
-q + --- - --- + -- - -- + -- - -- + -- - q + q
11 10 9 8 7 6 5
11 10 9 8 7 6 5
q q q q q q q</nowiki></pre></td></tr>
q q q q q q q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 9]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 9]][q]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36 -32 -30 -26 2 -20 -18 2 -10
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 9]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 9]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -36 -32 -30 -26 2 -20 -18 2 -10
-q - q - q - q + --- + q + q + --- + q
-q - q - q - q + --- + q + q + --- + q
24 14
24 14
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 9]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 8 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 9]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 8 4
2 a + a - 2 a + 7 a z + 4 a z - 3 a z + 5 a z + 4 a z -
2 a + a - 2 a + 7 a z + 4 a z - 3 a z + 5 a z + 4 a z -
10 4 6 6 8 6
10 4 6 6 8 6
a z + a z + a z</nowiki></pre></td></tr>
a z + a z + a z</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 9]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 7 9 13 15 6 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 9]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 7 9 13 15 6 2
-2 a + a + 2 a + a z - 2 a z + 2 a z - a z + 7 a z -
-2 a + a + 2 a + a z - 2 a z + 2 a z - a z + 7 a z -
Line 118: Line 204:
12 6 7 7 9 7 11 7 8 8 10 8
12 6 7 7 9 7 11 7 8 8 10 8
3 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr>
3 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 9]], Vassiliev[3][Knot[9, 9]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{8, -22}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 9]][q, t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 1 3 1 2
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 9]], Vassiliev[3][Knot[9, 9]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{8, -22}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 9]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 -5 1 1 1 3 1 2
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
25 9 23 8 21 8 21 7 19 7 19 6
25 9 23 8 21 8 21 7 19 7 19 6
Line 135: Line 231:
------ + ----- + ----
------ + ----- + ----
11 2 9 2 7
11 2 9 2 7
q t q t q t</nowiki></pre></td></tr>
q t q t q t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 9], 2][q]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -33 2 -31 4 8 3 10 18 6 17 25
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 9], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -33 2 -31 4 8 3 10 18 6 17 25
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- +
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- +
32 30 29 28 27 26 25 24 23
32 30 29 28 27 26 25 24 23
Line 150: Line 251:
--- - --- + -- - q + q
--- - --- + -- - q + q
11 10 9
11 10 9
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table> }}
</table> }}

Latest revision as of 17:05, 1 September 2005

9 8.gif

9_8

9 10.gif

9_10

9 9.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 9's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 9 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X3,12,4,13 X7,16,8,17 X9,18,10,1 X17,8,18,9 X15,10,16,11 X5,14,6,15 X11,2,12,3 X13,4,14,5
Gauss code -1, 8, -2, 9, -7, 1, -3, 5, -4, 6, -8, 2, -9, 7, -6, 3, -5, 4
Dowker-Thistlethwaite code 6 12 14 16 18 2 4 10 8
Conway Notation [423]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

9 9 ML.gif 9 9 AP.gif
[{6, 1}, {11, 2}, {1, 3}, {2, 5}, {3, 7}, {4, 6}, {5, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 4}]

[edit Notes on presentations of 9 9]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-16][5]
Hyperbolic Volume 8.01682
A-Polynomial See Data:9 9/A-polynomial

[edit Notes for 9 9's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 9 9's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 31, -6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (8, -22)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 9 9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-5         11
-7        110
-9       2  2
-11      21  -1
-13     32   1
-15    22    0
-17   33     0
-19  12      1
-21 13       -2
-23 1        1
-251         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials