9 16: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- -->
<!-- <math>\text{Null}</math> -->
<!-- -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 9 |
n = 9 |
Line 44: Line 44:
coloured_jones_5 = <math>-q^{150}+3 q^{149}-2 q^{148}-3 q^{147}+5 q^{146}-q^{145}-2 q^{144}+4 q^{143}-5 q^{142}-6 q^{141}+12 q^{140}+6 q^{139}-10 q^{138}-8 q^{137}-7 q^{136}+13 q^{135}+30 q^{134}+10 q^{133}-44 q^{132}-70 q^{131}-q^{130}+99 q^{129}+125 q^{128}+13 q^{127}-181 q^{126}-248 q^{125}-37 q^{124}+307 q^{123}+419 q^{122}+99 q^{121}-435 q^{120}-660 q^{119}-232 q^{118}+558 q^{117}+959 q^{116}+427 q^{115}-648 q^{114}-1248 q^{113}-696 q^{112}+651 q^{111}+1538 q^{110}+992 q^{109}-600 q^{108}-1732 q^{107}-1281 q^{106}+449 q^{105}+1865 q^{104}+1528 q^{103}-293 q^{102}-1862 q^{101}-1710 q^{100}+88 q^{99}+1826 q^{98}+1797 q^{97}+70 q^{96}-1679 q^{95}-1828 q^{94}-240 q^{93}+1547 q^{92}+1788 q^{91}+348 q^{90}-1340 q^{89}-1723 q^{88}-481 q^{87}+1166 q^{86}+1629 q^{85}+575 q^{84}-945 q^{83}-1520 q^{82}-693 q^{81}+721 q^{80}+1400 q^{79}+799 q^{78}-486 q^{77}-1246 q^{76}-877 q^{75}+208 q^{74}+1065 q^{73}+962 q^{72}+17 q^{71}-833 q^{70}-943 q^{69}-289 q^{68}+586 q^{67}+914 q^{66}+436 q^{65}-304 q^{64}-751 q^{63}-600 q^{62}+64 q^{61}+600 q^{60}+573 q^{59}+160 q^{58}-343 q^{57}-573 q^{56}-277 q^{55}+180 q^{54}+391 q^{53}+334 q^{52}+36 q^{51}-298 q^{50}-300 q^{49}-92 q^{48}+109 q^{47}+225 q^{46}+171 q^{45}-44 q^{44}-140 q^{43}-120 q^{42}-44 q^{41}+62 q^{40}+109 q^{39}+36 q^{38}-15 q^{37}-46 q^{36}-48 q^{35}-9 q^{34}+34 q^{33}+17 q^{32}+12 q^{31}-2 q^{30}-17 q^{29}-11 q^{28}+8 q^{27}+q^{26}+4 q^{25}+4 q^{24}-3 q^{23}-4 q^{22}+3 q^{21}+q^{18}-q^{16}+q^{15}</math> |
coloured_jones_5 = <math>-q^{150}+3 q^{149}-2 q^{148}-3 q^{147}+5 q^{146}-q^{145}-2 q^{144}+4 q^{143}-5 q^{142}-6 q^{141}+12 q^{140}+6 q^{139}-10 q^{138}-8 q^{137}-7 q^{136}+13 q^{135}+30 q^{134}+10 q^{133}-44 q^{132}-70 q^{131}-q^{130}+99 q^{129}+125 q^{128}+13 q^{127}-181 q^{126}-248 q^{125}-37 q^{124}+307 q^{123}+419 q^{122}+99 q^{121}-435 q^{120}-660 q^{119}-232 q^{118}+558 q^{117}+959 q^{116}+427 q^{115}-648 q^{114}-1248 q^{113}-696 q^{112}+651 q^{111}+1538 q^{110}+992 q^{109}-600 q^{108}-1732 q^{107}-1281 q^{106}+449 q^{105}+1865 q^{104}+1528 q^{103}-293 q^{102}-1862 q^{101}-1710 q^{100}+88 q^{99}+1826 q^{98}+1797 q^{97}+70 q^{96}-1679 q^{95}-1828 q^{94}-240 q^{93}+1547 q^{92}+1788 q^{91}+348 q^{90}-1340 q^{89}-1723 q^{88}-481 q^{87}+1166 q^{86}+1629 q^{85}+575 q^{84}-945 q^{83}-1520 q^{82}-693 q^{81}+721 q^{80}+1400 q^{79}+799 q^{78}-486 q^{77}-1246 q^{76}-877 q^{75}+208 q^{74}+1065 q^{73}+962 q^{72}+17 q^{71}-833 q^{70}-943 q^{69}-289 q^{68}+586 q^{67}+914 q^{66}+436 q^{65}-304 q^{64}-751 q^{63}-600 q^{62}+64 q^{61}+600 q^{60}+573 q^{59}+160 q^{58}-343 q^{57}-573 q^{56}-277 q^{55}+180 q^{54}+391 q^{53}+334 q^{52}+36 q^{51}-298 q^{50}-300 q^{49}-92 q^{48}+109 q^{47}+225 q^{46}+171 q^{45}-44 q^{44}-140 q^{43}-120 q^{42}-44 q^{41}+62 q^{40}+109 q^{39}+36 q^{38}-15 q^{37}-46 q^{36}-48 q^{35}-9 q^{34}+34 q^{33}+17 q^{32}+12 q^{31}-2 q^{30}-17 q^{29}-11 q^{28}+8 q^{27}+q^{26}+4 q^{25}+4 q^{24}-3 q^{23}-4 q^{22}+3 q^{21}+q^{18}-q^{16}+q^{15}</math> |
coloured_jones_6 = <math>q^{207}-3 q^{206}+2 q^{205}+3 q^{204}-5 q^{203}+q^{202}-q^{201}+8 q^{200}-10 q^{199}+q^{198}+17 q^{197}-23 q^{196}+q^{195}+6 q^{194}+24 q^{193}-26 q^{192}-13 q^{191}+35 q^{190}-54 q^{189}+19 q^{188}+51 q^{187}+68 q^{186}-93 q^{185}-99 q^{184}+21 q^{183}-98 q^{182}+147 q^{181}+247 q^{180}+198 q^{179}-272 q^{178}-446 q^{177}-200 q^{176}-199 q^{175}+539 q^{174}+890 q^{173}+648 q^{172}-544 q^{171}-1305 q^{170}-1037 q^{169}-654 q^{168}+1196 q^{167}+2297 q^{166}+1918 q^{165}-522 q^{164}-2629 q^{163}-2832 q^{162}-2034 q^{161}+1601 q^{160}+4268 q^{159}+4290 q^{158}+477 q^{157}-3678 q^{156}-5203 q^{155}-4535 q^{154}+966 q^{153}+5831 q^{152}+7137 q^{151}+2582 q^{150}-3554 q^{149}-6995 q^{148}-7347 q^{147}-783 q^{146}+6062 q^{145}+9195 q^{144}+4909 q^{143}-2256 q^{142}-7362 q^{141}-9231 q^{140}-2737 q^{139}+5074 q^{138}+9749 q^{137}+6359 q^{136}-663 q^{135}-6541 q^{134}-9681 q^{133}-3987 q^{132}+3697 q^{131}+9141 q^{130}+6665 q^{129}+506 q^{128}-5301 q^{127}-9131 q^{126}-4452 q^{125}+2476 q^{124}+8063 q^{123}+6330 q^{122}+1292 q^{121}-4056 q^{120}-8208 q^{119}-4620 q^{118}+1315 q^{117}+6829 q^{116}+5872 q^{115}+2104 q^{114}-2692 q^{113}-7128 q^{112}-4838 q^{111}-74 q^{110}+5299 q^{109}+5338 q^{108}+3092 q^{107}-988 q^{106}-5677 q^{105}-4955 q^{104}-1685 q^{103}+3273 q^{102}+4375 q^{101}+3912 q^{100}+959 q^{99}-3617 q^{98}-4465 q^{97}-3031 q^{96}+919 q^{95}+2673 q^{94}+3919 q^{93}+2566 q^{92}-1153 q^{91}-3027 q^{90}-3384 q^{89}-1063 q^{88}+495 q^{87}+2764 q^{86}+3042 q^{85}+900 q^{84}-989 q^{83}-2437 q^{82}-1830 q^{81}-1255 q^{80}+933 q^{79}+2164 q^{78}+1669 q^{77}+638 q^{76}-815 q^{75}-1252 q^{74}-1740 q^{73}-471 q^{72}+698 q^{71}+1143 q^{70}+1074 q^{69}+354 q^{68}-183 q^{67}-1111 q^{66}-780 q^{65}-255 q^{64}+248 q^{63}+591 q^{62}+551 q^{61}+397 q^{60}-306 q^{59}-382 q^{58}-366 q^{57}-181 q^{56}+57 q^{55}+239 q^{54}+345 q^{53}+38 q^{52}-24 q^{51}-133 q^{50}-144 q^{49}-105 q^{48}+11 q^{47}+131 q^{46}+38 q^{45}+53 q^{44}-30 q^{42}-61 q^{41}-28 q^{40}+30 q^{39}-2 q^{38}+21 q^{37}+13 q^{36}+6 q^{35}-17 q^{34}-12 q^{33}+9 q^{32}-6 q^{31}+3 q^{30}+3 q^{29}+5 q^{28}-3 q^{27}-4 q^{26}+4 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> |
coloured_jones_6 = <math>q^{207}-3 q^{206}+2 q^{205}+3 q^{204}-5 q^{203}+q^{202}-q^{201}+8 q^{200}-10 q^{199}+q^{198}+17 q^{197}-23 q^{196}+q^{195}+6 q^{194}+24 q^{193}-26 q^{192}-13 q^{191}+35 q^{190}-54 q^{189}+19 q^{188}+51 q^{187}+68 q^{186}-93 q^{185}-99 q^{184}+21 q^{183}-98 q^{182}+147 q^{181}+247 q^{180}+198 q^{179}-272 q^{178}-446 q^{177}-200 q^{176}-199 q^{175}+539 q^{174}+890 q^{173}+648 q^{172}-544 q^{171}-1305 q^{170}-1037 q^{169}-654 q^{168}+1196 q^{167}+2297 q^{166}+1918 q^{165}-522 q^{164}-2629 q^{163}-2832 q^{162}-2034 q^{161}+1601 q^{160}+4268 q^{159}+4290 q^{158}+477 q^{157}-3678 q^{156}-5203 q^{155}-4535 q^{154}+966 q^{153}+5831 q^{152}+7137 q^{151}+2582 q^{150}-3554 q^{149}-6995 q^{148}-7347 q^{147}-783 q^{146}+6062 q^{145}+9195 q^{144}+4909 q^{143}-2256 q^{142}-7362 q^{141}-9231 q^{140}-2737 q^{139}+5074 q^{138}+9749 q^{137}+6359 q^{136}-663 q^{135}-6541 q^{134}-9681 q^{133}-3987 q^{132}+3697 q^{131}+9141 q^{130}+6665 q^{129}+506 q^{128}-5301 q^{127}-9131 q^{126}-4452 q^{125}+2476 q^{124}+8063 q^{123}+6330 q^{122}+1292 q^{121}-4056 q^{120}-8208 q^{119}-4620 q^{118}+1315 q^{117}+6829 q^{116}+5872 q^{115}+2104 q^{114}-2692 q^{113}-7128 q^{112}-4838 q^{111}-74 q^{110}+5299 q^{109}+5338 q^{108}+3092 q^{107}-988 q^{106}-5677 q^{105}-4955 q^{104}-1685 q^{103}+3273 q^{102}+4375 q^{101}+3912 q^{100}+959 q^{99}-3617 q^{98}-4465 q^{97}-3031 q^{96}+919 q^{95}+2673 q^{94}+3919 q^{93}+2566 q^{92}-1153 q^{91}-3027 q^{90}-3384 q^{89}-1063 q^{88}+495 q^{87}+2764 q^{86}+3042 q^{85}+900 q^{84}-989 q^{83}-2437 q^{82}-1830 q^{81}-1255 q^{80}+933 q^{79}+2164 q^{78}+1669 q^{77}+638 q^{76}-815 q^{75}-1252 q^{74}-1740 q^{73}-471 q^{72}+698 q^{71}+1143 q^{70}+1074 q^{69}+354 q^{68}-183 q^{67}-1111 q^{66}-780 q^{65}-255 q^{64}+248 q^{63}+591 q^{62}+551 q^{61}+397 q^{60}-306 q^{59}-382 q^{58}-366 q^{57}-181 q^{56}+57 q^{55}+239 q^{54}+345 q^{53}+38 q^{52}-24 q^{51}-133 q^{50}-144 q^{49}-105 q^{48}+11 q^{47}+131 q^{46}+38 q^{45}+53 q^{44}-30 q^{42}-61 q^{41}-28 q^{40}+30 q^{39}-2 q^{38}+21 q^{37}+13 q^{36}+6 q^{35}-17 q^{34}-12 q^{33}+9 q^{32}-6 q^{31}+3 q^{30}+3 q^{29}+5 q^{28}-3 q^{27}-4 q^{26}+4 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_7 = |
computer_talk =
computer_talk =
<table>
<table>
Line 51: Line 51:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 16]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[16, 6, 17, 5], X[18, 8, 1, 7],
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 16]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[16, 6, 17, 5], X[18, 8, 1, 7],
X[6, 18, 7, 17], X[10, 16, 11, 15], X[14, 10, 15, 9],
X[6, 18, 7, 17], X[10, 16, 11, 15], X[14, 10, 15, 9],
X[8, 14, 9, 13], X[2, 12, 3, 11]]</nowiki></pre></td></tr>
X[8, 14, 9, 13], X[2, 12, 3, 11]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 16]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 16]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 12, 16, 18, 14, 2, 8, 10, 6]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 16]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 2, 2, -1, 2, 2, 2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 16]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_16_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 16]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 16]]&) /@ {
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 12, 16, 18, 14, 2, 8, 10, 6]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 16]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, 1, 2, 2, -1, 2, 2, 2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 16]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 16]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_16_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 16]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
}</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, {4, 7}, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 16]][t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 5 8 2 3
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 3, {4, 7}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 16]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 5 8 2 3
-9 + -- - -- + - + 8 t - 5 t + 2 t
-9 + -- - -- + - + 8 t - 5 t + 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 16]][z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 6 z + 7 z + 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 16]][z]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 16]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 16]], KnotSignature[Knot[9, 16]]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, 6}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 6 z + 7 z + 2 z</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 16]][q]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 4 5 6 7 8 9 10 11 12
<table><tr align=left>
q - q + 4 q - 5 q + 6 q - 7 q + 6 q - 5 q + 3 q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 16]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 16]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 14 16 18 20 22 26 34 36
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 16]}</nowiki></code></td></tr>
q + 3 q + q + 2 q + q - 2 q - 3 q + q - q</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 16]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 4 6 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 16]], KnotSignature[Knot[9, 16]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{39, 6}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 16]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 4 5 6 7 8 9 10 11 12
q - q + 4 q - 5 q + 6 q - 7 q + 6 q - 5 q + 3 q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 16]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 16]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 10 14 16 18 20 22 26 34 36
q + 3 q + q + 2 q + q - 2 q - 3 q + q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 16]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 4 6 6
-3 4 2 z 8 z z 3 z 5 z z z
-3 4 2 z 8 z z 3 z 5 z z z
-- + -- - ---- + ---- - --- + ---- + ---- + -- + --
-- + -- - ---- + ---- - --- + ---- + ---- + -- + --
8 6 10 6 10 8 6 8 6
8 6 10 6 10 8 6 8 6
a a a a a a a a a</nowiki></pre></td></tr>
a a a a a a a a a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 16]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 16]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 2
-3 4 2 z 2 z 4 z 4 z z 2 z z 6 z 8 z
-3 4 2 z 2 z 4 z 4 z z 2 z z 6 z 8 z
-- - -- + --- + --- + --- + --- - --- + ---- + --- + ---- + ---- +
-- - -- + --- + --- + --- + --- - --- + ---- + --- + ---- + ---- +
Line 123: Line 209:
--- + --
--- + --
10 8
10 8
a a</nowiki></pre></td></tr>
a a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 16]], Vassiliev[3][Knot[9, 16]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{6, 14}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 16]][q, t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 7 9 2 11 2 11 3 13 3 13 4
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 16]], Vassiliev[3][Knot[9, 16]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{6, 14}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 16]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 7 7 9 2 11 2 11 3 13 3 13 4
q + q + q t + 3 q t + q t + 2 q t + 3 q t + 4 q t +
q + q + q t + 3 q t + q t + 2 q t + 3 q t + 4 q t +
Line 134: Line 230:
21 7 21 8 23 8 25 9
21 7 21 8 23 8 25 9
3 q t + q t + 2 q t + q t</nowiki></pre></td></tr>
3 q t + q t + 2 q t + q t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 16], 2][q]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 7 9 10 11 12 13 14 15
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 16], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 7 9 10 11 12 13 14 15
q - q + 5 q - 4 q - 5 q + 15 q - 7 q - 17 q + 27 q -
q - q + 5 q - 4 q - 5 q + 15 q - 7 q - 17 q + 27 q -
Line 146: Line 247:
32 33
32 33
3 q + q</nowiki></pre></td></tr>
3 q + q</nowiki></code></td></tr>
</table> }}
</table> }}

Latest revision as of 16:57, 1 September 2005

9 15.gif

9_15

9 17.gif

9_17

9 16.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 16's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 16 at Knotilus!


Knot presentations

Planar diagram presentation X4251 X12,4,13,3 X16,6,17,5 X18,8,1,7 X6,18,7,17 X10,16,11,15 X14,10,15,9 X8,14,9,13 X2,12,3,11
Gauss code 1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4
Dowker-Thistlethwaite code 4 12 16 18 14 2 8 10 6
Conway Notation [3,3,2+]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

9 16 ML.gif 9 16 AP.gif
[{3, 10}, {2, 6}, {1, 3}, {11, 9}, {10, 8}, {9, 7}, {8, 5}, {6, 4}, {5, 2}, {4, 11}, {7, 1}]

[edit Notes on presentations of 9 16]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [5][-16]
Hyperbolic Volume 9.88301
A-Polynomial See Data:9 16/A-polynomial

[edit Notes for 9 16's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 9 16's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 39, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (6, 14)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 9 16. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
25         1-1
23        2 2
21       31 -2
19      32  1
17     43   -1
15    23    -1
13   34     1
11  12      -1
9  3       3
711        0
51         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials