9 48

From Knot Atlas
Revision as of 19:06, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

9 47.gif

9_47

9 49.gif

9_49

9 48.gif Visit 9 48's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 48's page at Knotilus!

Visit 9 48's page at the original Knot Atlas!

9 48 Quick Notes


9 48 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X12,8,13,7 X3,11,4,10 X11,3,12,2 X14,6,15,5 X6,14,7,13 X15,18,16,1 X9,17,10,16 X17,9,18,8
Gauss code -1, 4, -3, 1, 5, -6, 2, 9, -8, 3, -4, -2, 6, -5, -7, 8, -9, 7
Dowker-Thistlethwaite code 4 10 -14 -12 16 2 -6 18 8
Conway Notation [21,21,21-]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [-1][-8]
Hyperbolic Volume 9.53188
A-Polynomial See Data:9 48/A-polynomial

[edit Notes for 9 48's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 9 48's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (3, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 48. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345χ
13       2-2
11      1 1
9     32 -1
7    31  2
5   13   2
3  33    0
1 12     1
-1 2      -2
-31       1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 48]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 48]]
Out[3]=  
PD[X[1, 4, 2, 5], X[12, 8, 13, 7], X[3, 11, 4, 10], X[11, 3, 12, 2], 
 X[14, 6, 15, 5], X[6, 14, 7, 13], X[15, 18, 16, 1], X[9, 17, 10, 16], 

X[17, 9, 18, 8]]
In[4]:=
GaussCode[Knot[9, 48]]
Out[4]=  
GaussCode[-1, 4, -3, 1, 5, -6, 2, 9, -8, 3, -4, -2, 6, -5, -7, 8, -9, 7]
In[5]:=
BR[Knot[9, 48]]
Out[5]=  
BR[4, {1, 1, 2, -1, 2, 1, -3, 2, -1, 2, -3}]
In[6]:=
alex = Alexander[Knot[9, 48]][t]
Out[6]=  
       -2   7          2

-11 - t + - + 7 t - t

t
In[7]:=
Conway[Knot[9, 48]][z]
Out[7]=  
       2    4
1 + 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 48], Knot[11, NonAlternating, 1]}
In[9]:=
{KnotDet[Knot[9, 48]], KnotSignature[Knot[9, 48]]}
Out[9]=  
{27, 2}
In[10]:=
J=Jones[Knot[9, 48]][q]
Out[10]=  
     1            2      3      4      5      6

-3 + - + 4 q - 4 q + 6 q - 4 q + 3 q - 2 q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 48]}
In[12]:=
A2Invariant[Knot[9, 48]][q]
Out[12]=  
      -4    -2    2    4      6    8      10      12    16      18

-1 + q - q + q - q + 2 q + q + 2 q + 2 q + q - 2 q -

    20
2 q
In[13]:=
Kauffman[Knot[9, 48]][a, z]
Out[13]=  
                                 2      2      2      3      3      3

2 3 4 z 5 z z 2 z 2 z 2 z 3 z 5 z 3 z -- + -- - --- - --- - -- - z - -- + ---- + ---- + ---- + ---- - ---- -

6    4    7     5     3         6     4      2      7      5      3

a a a a a a a a a a a

    3           4      4    5      5      5    6      6      6    7
 5 z     4   6 z    5 z    z    2 z    3 z    z    4 z    3 z    z
 ---- + z  - ---- - ---- - -- + ---- + ---- + -- + ---- + ---- + -- + 
  a            4      2     5     3     a      6     4      2     5
              a      a     a     a            a     a      a     a

  7
 z
 --
  3
a
In[14]:=
{Vassiliev[2][Knot[9, 48]], Vassiliev[3][Knot[9, 48]]}
Out[14]=  
{0, 5}
In[15]:=
Kh[Knot[9, 48]][q, t]
Out[15]=  
         3     1      2    q      3      5        5  2      7  2

2 q + 3 q + ----- + --- + - + 3 q t + q t + 3 q t + 3 q t +

             3  2   q t   t
            q  t

  7  3      9  3      9  4    11  4      13  5
q t + 3 q t + 2 q t + q t + 2 q t