9 19

From Knot Atlas
Revision as of 19:08, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

9 18.gif

9_18

9 20.gif

9_20

9 19.gif Visit 9 19's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 19's page at Knotilus!

Visit 9 19's page at the original Knot Atlas!

9 19 Quick Notes


9 19 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X13,16,14,17 X7,15,8,14 X15,7,16,6 X11,18,12,1 X17,12,18,13
Gauss code -1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8
Dowker-Thistlethwaite code 4 8 10 14 2 18 16 6 12
Conway Notation [23112]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 10.0325
A-Polynomial See Data:9 19/A-polynomial

[edit Notes for 9 19's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 19's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 41, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-2, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 19. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        1 -1
5       31 2
3      31  -2
1     43   1
-1    44    0
-3   23     -1
-5  24      2
-7 12       -1
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 19]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 19]]
Out[3]=  
PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], 
 X[13, 16, 14, 17], X[7, 15, 8, 14], X[15, 7, 16, 6], 

X[11, 18, 12, 1], X[17, 12, 18, 13]]
In[4]:=
GaussCode[Knot[9, 19]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8]
In[5]:=
BR[Knot[9, 19]]
Out[5]=  
BR[5, {1, -2, 1, -2, -2, -3, 2, 4, -3, 4}]
In[6]:=
alex = Alexander[Knot[9, 19]][t]
Out[6]=  
     2    10             2

17 + -- - -- - 10 t + 2 t

     2   t
t
In[7]:=
Conway[Knot[9, 19]][z]
Out[7]=  
       2      4
1 - 2 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 19]}
In[9]:=
{KnotDet[Knot[9, 19]], KnotSignature[Knot[9, 19]]}
Out[9]=  
{41, 0}
In[10]:=
J=Jones[Knot[9, 19]][q]
Out[10]=  
     -5   3    4    6    7            2      3    4

7 - q + -- - -- + -- - - - 6 q + 4 q - 2 q + q

          4    3    2   q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 19]}
In[12]:=
A2Invariant[Knot[9, 19]][q]
Out[12]=  
      -16    -14    -12    -10   2     -2    2      4    8    10

-1 - q + q + q - q + -- + q + q - 2 q + q - q +

                                 8
                                q

  12    14
q + q
In[13]:=
Kauffman[Knot[9, 19]][a, z]
Out[13]=  
                                                   2      2
-4    -2    2   z    z            3        2   2 z    3 z       2  2

a + a - a + -- - - - 3 a z - a z + 3 z - ---- - ---- + 8 a z +

                 3   a                           4      2
                a                               a      a

              3    3                                         4
    4  2   3 z    z          3      3  3      5  3      4   z
 4 a  z  - ---- + -- + 10 a z  + 4 a  z  - 2 a  z  - 4 z  + -- - 
             3    a                                          4
            a                                               a

                         5    5
     2  4      4  4   2 z    z          5      3  5    5  5      6
 11 a  z  - 8 a  z  + ---- - -- - 11 a z  - 7 a  z  + a  z  + 2 z  + 
                        3    a
                       a

    6                          7
 2 z       2  6      4  6   2 z         7      3  7    8    2  8
 ---- + 3 a  z  + 3 a  z  + ---- + 5 a z  + 3 a  z  + z  + a  z
   2                         a
a
In[14]:=
{Vassiliev[2][Knot[9, 19]], Vassiliev[3][Knot[9, 19]]}
Out[14]=  
{0, -1}
In[15]:=
Kh[Knot[9, 19]][q, t]
Out[15]=  
4           1        2       1       2       2       4       2

- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2

         q   t    q  t    q  t    q  t    q  t    q  t    q  t

  3      4               3      3  2      5  2    5  3    7  3    9  4
 ---- + --- + 3 q t + 3 q  t + q  t  + 3 q  t  + q  t  + q  t  + q  t
  3     q t
q t