8 11
|
|
Visit 8 11's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 8 11's page at Knotilus! Visit 8 11's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X9,16,10,1 X15,6,16,7 X7,14,8,15 X13,8,14,9 |
Gauss code | -1, 4, -3, 1, -2, 6, -7, 8, -5, 3, -4, 2, -8, 7, -6, 5 |
Dowker-Thistlethwaite code | 4 10 12 14 16 2 8 6 |
Conway Notation | [3212] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+7 t-9+7 t^{-1} -2 t^{-2} } |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 27, -2 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-q^{13}+q^{11}-2 q^9+q^5+2 q- q^{-1} + q^{-3} } |
2 | |
3 | |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{132}-q^{130}-q^{128}+q^{126}+2 q^{122}-4 q^{120}-3 q^{118}+4 q^{116}+3 q^{114}+8 q^{112}-8 q^{110}-13 q^{108}+q^{106}+9 q^{104}+25 q^{102}-5 q^{100}-28 q^{98}-20 q^{96}+3 q^{94}+49 q^{92}+19 q^{90}-28 q^{88}-47 q^{86}-23 q^{84}+56 q^{82}+47 q^{80}-7 q^{78}-54 q^{76}-47 q^{74}+43 q^{72}+53 q^{70}+12 q^{68}-39 q^{66}-49 q^{64}+15 q^{62}+36 q^{60}+22 q^{58}-16 q^{56}-33 q^{54}-7 q^{52}+17 q^{50}+24 q^{48}+6 q^{46}-15 q^{44}-31 q^{42}-5 q^{40}+30 q^{38}+29 q^{36}-2 q^{34}-52 q^{32}-25 q^{30}+32 q^{28}+51 q^{26}+18 q^{24}-60 q^{22}-43 q^{20}+16 q^{18}+54 q^{16}+40 q^{14}-43 q^{12}-48 q^{10}-11 q^8+35 q^6+49 q^4-13 q^2-29-23 q^{-2} +6 q^{-4} +32 q^{-6} +5 q^{-8} -6 q^{-10} -16 q^{-12} -6 q^{-14} +12 q^{-16} +3 q^{-18} +2 q^{-20} -4 q^{-22} -3 q^{-24} +3 q^{-26} + q^{-30} - q^{-32} - q^{-34} + q^{-36} } |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}+q^{32}+q^{30}+q^{26}-2 q^{24}-q^{22}-2 q^{20}-2 q^{18}-q^{16}+q^{12}+q^{10}+2 q^8+2 q^4+1+ q^{-2} + q^{-6} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-q^{112}+2 q^{110}-3 q^{108}+q^{106}-q^{104}-3 q^{102}+7 q^{100}-8 q^{98}+8 q^{96}-6 q^{94}+2 q^{92}+7 q^{90}-13 q^{88}+16 q^{86}-13 q^{84}+7 q^{82}+3 q^{80}-10 q^{78}+13 q^{76}-9 q^{74}+8 q^{72}+4 q^{70}-10 q^{68}+7 q^{66}-2 q^{64}-8 q^{62}+14 q^{60}-18 q^{58}+10 q^{56}-3 q^{54}-9 q^{52}+18 q^{50}-25 q^{48}+19 q^{46}-14 q^{44}-q^{42}+11 q^{40}-17 q^{38}+16 q^{36}-9 q^{34}+4 q^{32}+6 q^{30}-9 q^{28}+7 q^{26}-7 q^{22}+14 q^{20}-11 q^{18}+5 q^{16}+6 q^{14}-11 q^{12}+17 q^{10}-14 q^8+9 q^6-2 q^4-7 q^2+10-9 q^{-2} +8 q^{-4} -3 q^{-6} + q^{-8} +2 q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 11"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+7 t-9+7 t^{-1} -2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (-1, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 11. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[8, 11]] |
Out[2]= | 8 |
In[3]:= | PD[Knot[8, 11]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], X[9, 16, 10, 1], X[15, 6, 16, 7], X[7, 14, 8, 15], X[13, 8, 14, 9]] |
In[4]:= | GaussCode[Knot[8, 11]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 6, -7, 8, -5, 3, -4, 2, -8, 7, -6, 5] |
In[5]:= | BR[Knot[8, 11]] |
Out[5]= | BR[4, {-1, -1, -2, 1, -2, -2, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[8, 11]][t] |
Out[6]= | 2 7 2 |
In[7]:= | Conway[Knot[8, 11]][z] |
Out[7]= | 2 4 1 - z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 11], Knot[10, 147], Knot[11, NonAlternating, 122]} |
In[9]:= | {KnotDet[Knot[8, 11]], KnotSignature[Knot[8, 11]]} |
Out[9]= | {27, -2} |
In[10]:= | J=Jones[Knot[8, 11]][q] |
Out[10]= | -7 2 3 5 5 4 4 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[8, 11]} |
In[12]:= | A2Invariant[Knot[8, 11]][q] |
Out[12]= | -22 -16 2 -12 -10 2 2 4 |
In[13]:= | Kauffman[Knot[8, 11]][a, z] |
Out[13]= | 2 4 6 3 5 7 2 4 2 |
In[14]:= | {Vassiliev[2][Knot[8, 11]], Vassiliev[3][Knot[8, 11]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Knot[8, 11]][q, t] |
Out[15]= | 2 3 1 1 1 2 1 3 2 |