9 30

From Knot Atlas
Revision as of 19:13, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

9 29.gif

9_29

9 31.gif

9_31

9 30.gif Visit 9 30's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 30's page at Knotilus!

Visit 9 30's page at the original Knot Atlas!

9 30 Quick Notes


9 30 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X10,6,11,5 X8394 X2,9,3,10 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13
Gauss code 1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6
Dowker-Thistlethwaite code 4 8 10 14 2 16 6 18 12
Conway Notation [211,21,2]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 11.9545
A-Polynomial See Data:9 30/A-polynomial

[edit Notes for 9 30's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 0

[edit Notes for 9 30's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+5 t^2-12 t+17-12 t^{-1} +5 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6-z^4-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 53, 0 }
Jones polynomial [math]\displaystyle{ q^4-3 q^3+6 q^2-8 q+9-9 q^{-1} +8 q^{-2} -5 q^{-3} +3 q^{-4} - q^{-5} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6+2 a^2 z^4+z^4 a^{-2} -4 z^4-a^4 z^2+5 a^2 z^2+2 z^2 a^{-2} -7 z^2-a^4+4 a^2+2 a^{-2} -4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a^2 z^8+z^8+3 a^3 z^7+7 a z^7+4 z^7 a^{-1} +3 a^4 z^6+8 a^2 z^6+5 z^6 a^{-2} +10 z^6+a^5 z^5-3 a^3 z^5-9 a z^5-2 z^5 a^{-1} +3 z^5 a^{-3} -7 a^4 z^4-22 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} -23 z^4-2 a^5 z^3-3 a^3 z^3-2 z^3 a^{-1} -3 z^3 a^{-3} +5 a^4 z^2+16 a^2 z^2+5 z^2 a^{-2} -z^2 a^{-4} +17 z^2+a^5 z+2 a^3 z+a z+z a^{-1} +z a^{-3} -a^4-4 a^2-2 a^{-2} -4 }[/math]
The A2 invariant [math]\displaystyle{ -q^{16}+q^{12}-q^{10}+3 q^8+q^6+q^2-3+ q^{-2} -2 q^{-4} + q^{-6} +2 q^{-8} - q^{-10} + q^{-12} }[/math]
The G2 invariant [math]\displaystyle{ q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+7 q^{72}-5 q^{70}-5 q^{68}+19 q^{66}-31 q^{64}+39 q^{62}-34 q^{60}+11 q^{58}+19 q^{56}-55 q^{54}+79 q^{52}-79 q^{50}+49 q^{48}-2 q^{46}-48 q^{44}+83 q^{42}-84 q^{40}+60 q^{38}-9 q^{36}-36 q^{34}+61 q^{32}-52 q^{30}+14 q^{28}+39 q^{26}-69 q^{24}+75 q^{22}-40 q^{20}-15 q^{18}+77 q^{16}-118 q^{14}+120 q^{12}-84 q^{10}+16 q^8+55 q^6-109 q^4+123 q^2-97+43 q^{-2} +15 q^{-4} -64 q^{-6} +72 q^{-8} -52 q^{-10} +6 q^{-12} +39 q^{-14} -60 q^{-16} +48 q^{-18} -8 q^{-20} -41 q^{-22} +79 q^{-24} -87 q^{-26} +65 q^{-28} -21 q^{-30} -29 q^{-32} +67 q^{-34} -77 q^{-36} +67 q^{-38} -34 q^{-40} +5 q^{-42} +19 q^{-44} -33 q^{-46} +32 q^{-48} -23 q^{-50} +13 q^{-52} -2 q^{-54} -4 q^{-56} +5 q^{-58} -6 q^{-60} +4 q^{-62} -2 q^{-64} + q^{-66} }[/math]

Vassiliev invariants

V2 and V3: (-1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{82}{3} }[/math] [math]\displaystyle{ \frac{38}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{208}{3} }[/math] [math]\displaystyle{ \frac{64}{3} }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ -\frac{328}{3} }[/math] [math]\displaystyle{ -\frac{152}{3} }[/math] [math]\displaystyle{ -\frac{2431}{30} }[/math] [math]\displaystyle{ \frac{1222}{15} }[/math] [math]\displaystyle{ -\frac{8342}{45} }[/math] [math]\displaystyle{ \frac{607}{18} }[/math] [math]\displaystyle{ -\frac{1471}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 9 30. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        2 -2
5       41 3
3      42  -2
1     54   1
-1    55    0
-3   34     -1
-5  25      3
-7 13       -2
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 30]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 30]]
Out[3]=  
PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], 
 X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12], 

X[12, 17, 13, 18], X[6, 14, 7, 13]]
In[4]:=
GaussCode[Knot[9, 30]]
Out[4]=  
GaussCode[1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6]
In[5]:=
BR[Knot[9, 30]]
Out[5]=  
BR[4, {-1, -1, 2, 2, -1, 2, -3, 2, -3}]
In[6]:=
alex = Alexander[Knot[9, 30]][t]
Out[6]=  
      -3   5    12             2    3

17 - t + -- - -- - 12 t + 5 t - t

           2   t
t
In[7]:=
Conway[Knot[9, 30]][z]
Out[7]=  
     2    4    6
1 - z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 30], Knot[11, NonAlternating, 130]}
In[9]:=
{KnotDet[Knot[9, 30]], KnotSignature[Knot[9, 30]]}
Out[9]=  
{53, 0}
In[10]:=
J=Jones[Knot[9, 30]][q]
Out[10]=  
     -5   3    5    8    9            2      3    4

9 - q + -- - -- + -- - - - 8 q + 6 q - 3 q + q

          4    3    2   q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 30], Knot[11, NonAlternating, 114]}
In[12]:=
A2Invariant[Knot[9, 30]][q]
Out[12]=  
      -16    -12    -10   3     -6    -2    2      4    6      8

-3 - q + q - q + -- + q + q + q - 2 q + q + 2 q -

                          8
                         q

  10    12
q + q
In[13]:=
Kauffman[Knot[9, 30]][a, z]
Out[13]=  
                                                              2
    2       2    4   z    z            3      5         2   z

-4 - -- - 4 a - a + -- + - + a z + 2 a z + a z + 17 z - -- +

     2                3   a                                  4
    a                a                                      a

    2                           3      3
 5 z        2  2      4  2   3 z    2 z       3  3      5  3       4
 ---- + 16 a  z  + 5 a  z  - ---- - ---- - 3 a  z  - 2 a  z  - 23 z  + 
   2                           3     a
  a                           a

  4      4                           5      5
 z    7 z        2  4      4  4   3 z    2 z         5      3  5
 -- - ---- - 22 a  z  - 7 a  z  + ---- - ---- - 9 a z  - 3 a  z  + 
  4     2                           3     a
 a     a                           a

                    6                          7
  5  5       6   5 z       2  6      4  6   4 z         7      3  7
 a  z  + 10 z  + ---- + 8 a  z  + 3 a  z  + ---- + 7 a z  + 3 a  z  + 
                   2                         a
                  a

  8    2  8
z + a z
In[14]:=
{Vassiliev[2][Knot[9, 30]], Vassiliev[3][Knot[9, 30]]}
Out[14]=  
{0, -1}
In[15]:=
Kh[Knot[9, 30]][q, t]
Out[15]=  
5           1        2       1       3       2       5       3

- + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2

         q   t    q  t    q  t    q  t    q  t    q  t    q  t

  4      5               3        3  2      5  2    5  3      7  3
 ---- + --- + 4 q t + 4 q  t + 2 q  t  + 4 q  t  + q  t  + 2 q  t  + 
  3     q t
 q  t

  9  4
q t