9 30
|
|
|
|
Visit 9 30's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 30's page at Knotilus! Visit 9 30's page at the original Knot Atlas! |
Knot presentations
| Planar diagram presentation | X4251 X10,6,11,5 X8394 X2,9,3,10 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13 |
| Gauss code | 1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6 |
| Dowker-Thistlethwaite code | 4 8 10 14 2 16 6 18 12 |
| Conway Notation | [211,21,2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^3+5 t^2-12 t+17-12 t^{-1} +5 t^{-2} - t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^6-z^4-z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 53, 0 } |
| Jones polynomial | [math]\displaystyle{ q^4-3 q^3+6 q^2-8 q+9-9 q^{-1} +8 q^{-2} -5 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^6+2 a^2 z^4+z^4 a^{-2} -4 z^4-a^4 z^2+5 a^2 z^2+2 z^2 a^{-2} -7 z^2-a^4+4 a^2+2 a^{-2} -4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^2 z^8+z^8+3 a^3 z^7+7 a z^7+4 z^7 a^{-1} +3 a^4 z^6+8 a^2 z^6+5 z^6 a^{-2} +10 z^6+a^5 z^5-3 a^3 z^5-9 a z^5-2 z^5 a^{-1} +3 z^5 a^{-3} -7 a^4 z^4-22 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} -23 z^4-2 a^5 z^3-3 a^3 z^3-2 z^3 a^{-1} -3 z^3 a^{-3} +5 a^4 z^2+16 a^2 z^2+5 z^2 a^{-2} -z^2 a^{-4} +17 z^2+a^5 z+2 a^3 z+a z+z a^{-1} +z a^{-3} -a^4-4 a^2-2 a^{-2} -4 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{16}+q^{12}-q^{10}+3 q^8+q^6+q^2-3+ q^{-2} -2 q^{-4} + q^{-6} +2 q^{-8} - q^{-10} + q^{-12} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+7 q^{72}-5 q^{70}-5 q^{68}+19 q^{66}-31 q^{64}+39 q^{62}-34 q^{60}+11 q^{58}+19 q^{56}-55 q^{54}+79 q^{52}-79 q^{50}+49 q^{48}-2 q^{46}-48 q^{44}+83 q^{42}-84 q^{40}+60 q^{38}-9 q^{36}-36 q^{34}+61 q^{32}-52 q^{30}+14 q^{28}+39 q^{26}-69 q^{24}+75 q^{22}-40 q^{20}-15 q^{18}+77 q^{16}-118 q^{14}+120 q^{12}-84 q^{10}+16 q^8+55 q^6-109 q^4+123 q^2-97+43 q^{-2} +15 q^{-4} -64 q^{-6} +72 q^{-8} -52 q^{-10} +6 q^{-12} +39 q^{-14} -60 q^{-16} +48 q^{-18} -8 q^{-20} -41 q^{-22} +79 q^{-24} -87 q^{-26} +65 q^{-28} -21 q^{-30} -29 q^{-32} +67 q^{-34} -77 q^{-36} +67 q^{-38} -34 q^{-40} +5 q^{-42} +19 q^{-44} -33 q^{-46} +32 q^{-48} -23 q^{-50} +13 q^{-52} -2 q^{-54} -4 q^{-56} +5 q^{-58} -6 q^{-60} +4 q^{-62} -2 q^{-64} + q^{-66} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{11}+2 q^9-2 q^7+3 q^5-q^3+ q^{-1} -2 q^{-3} +3 q^{-5} -2 q^{-7} + q^{-9} }[/math] |
| 2 | [math]\displaystyle{ q^{32}-2 q^{30}-2 q^{28}+7 q^{26}-3 q^{24}-9 q^{22}+14 q^{20}+q^{18}-18 q^{16}+13 q^{14}+8 q^{12}-17 q^{10}+4 q^8+10 q^6-6 q^4-6 q^2+6+9 q^{-2} -13 q^{-4} - q^{-6} +19 q^{-8} -13 q^{-10} -8 q^{-12} +17 q^{-14} -6 q^{-16} -8 q^{-18} +7 q^{-20} -2 q^{-24} + q^{-26} }[/math] |
| 3 | [math]\displaystyle{ -q^{63}+2 q^{61}+2 q^{59}-3 q^{57}-7 q^{55}+3 q^{53}+16 q^{51}-2 q^{49}-26 q^{47}-7 q^{45}+39 q^{43}+23 q^{41}-47 q^{39}-45 q^{37}+48 q^{35}+68 q^{33}-36 q^{31}-91 q^{29}+19 q^{27}+98 q^{25}+4 q^{23}-96 q^{21}-26 q^{19}+87 q^{17}+40 q^{15}-65 q^{13}-50 q^{11}+41 q^9+55 q^7-12 q^5-57 q^3-15 q+55 q^{-1} +45 q^{-3} -48 q^{-5} -72 q^{-7} +37 q^{-9} +92 q^{-11} -20 q^{-13} -101 q^{-15} + q^{-17} +96 q^{-19} +20 q^{-21} -82 q^{-23} -32 q^{-25} +60 q^{-27} +33 q^{-29} -34 q^{-31} -30 q^{-33} +17 q^{-35} +21 q^{-37} -7 q^{-39} -10 q^{-41} + q^{-43} +4 q^{-45} -2 q^{-49} + q^{-51} }[/math] |
| 4 | [math]\displaystyle{ q^{104}-2 q^{102}-2 q^{100}+3 q^{98}+3 q^{96}+7 q^{94}-10 q^{92}-16 q^{90}+2 q^{88}+14 q^{86}+41 q^{84}-12 q^{82}-59 q^{80}-37 q^{78}+16 q^{76}+129 q^{74}+49 q^{72}-98 q^{70}-157 q^{68}-79 q^{66}+221 q^{64}+227 q^{62}-12 q^{60}-286 q^{58}-324 q^{56}+159 q^{54}+412 q^{52}+252 q^{50}-243 q^{48}-568 q^{46}-95 q^{44}+410 q^{42}+513 q^{40}-12 q^{38}-602 q^{36}-351 q^{34}+218 q^{32}+576 q^{30}+213 q^{28}-431 q^{26}-436 q^{24}+446 q^{20}+311 q^{18}-184 q^{16}-383 q^{14}-165 q^{12}+245 q^{10}+330 q^8+66 q^6-278 q^4-306 q^2+7+324 q^{-2} +339 q^{-4} -128 q^{-6} -432 q^{-8} -272 q^{-10} +246 q^{-12} +574 q^{-14} +101 q^{-16} -431 q^{-18} -517 q^{-20} +37 q^{-22} +623 q^{-24} +326 q^{-26} -233 q^{-28} -559 q^{-30} -203 q^{-32} +420 q^{-34} +381 q^{-36} +25 q^{-38} -367 q^{-40} -279 q^{-42} +144 q^{-44} +234 q^{-46} +133 q^{-48} -125 q^{-50} -176 q^{-52} + q^{-54} +70 q^{-56} +88 q^{-58} -14 q^{-60} -59 q^{-62} -11 q^{-64} +4 q^{-66} +26 q^{-68} +3 q^{-70} -11 q^{-72} - q^{-74} -2 q^{-76} +4 q^{-78} -2 q^{-82} + q^{-84} }[/math] |
| 5 | [math]\displaystyle{ -q^{155}+2 q^{153}+2 q^{151}-3 q^{149}-3 q^{147}-3 q^{145}+10 q^{141}+16 q^{139}-2 q^{137}-23 q^{135}-29 q^{133}-13 q^{131}+32 q^{129}+71 q^{127}+52 q^{125}-43 q^{123}-132 q^{121}-124 q^{119}+8 q^{117}+199 q^{115}+275 q^{113}+97 q^{111}-254 q^{109}-473 q^{107}-316 q^{105}+194 q^{103}+700 q^{101}+693 q^{99}+26 q^{97}-853 q^{95}-1164 q^{93}-488 q^{91}+802 q^{89}+1646 q^{87}+1166 q^{85}-454 q^{83}-1975 q^{81}-1968 q^{79}-198 q^{77}+1994 q^{75}+2703 q^{73}+1111 q^{71}-1652 q^{69}-3227 q^{67}-2060 q^{65}+989 q^{63}+3361 q^{61}+2906 q^{59}-129 q^{57}-3148 q^{55}-3462 q^{53}-718 q^{51}+2634 q^{49}+3644 q^{47}+1441 q^{45}-1965 q^{43}-3518 q^{41}-1914 q^{39}+1292 q^{37}+3139 q^{35}+2125 q^{33}-659 q^{31}-2658 q^{29}-2166 q^{27}+164 q^{25}+2139 q^{23}+2091 q^{21}+265 q^{19}-1642 q^{17}-2014 q^{15}-655 q^{13}+1175 q^{11}+1966 q^9+1091 q^7-705 q^5-1948 q^3-1594 q+160 q^{-1} +1931 q^{-3} +2165 q^{-5} +487 q^{-7} -1821 q^{-9} -2732 q^{-11} -1254 q^{-13} +1532 q^{-15} +3201 q^{-17} +2084 q^{-19} -1027 q^{-21} -3429 q^{-23} -2860 q^{-25} +307 q^{-27} +3311 q^{-29} +3458 q^{-31} +531 q^{-33} -2851 q^{-35} -3692 q^{-37} -1334 q^{-39} +2073 q^{-41} +3538 q^{-43} +1939 q^{-45} -1174 q^{-47} -3018 q^{-49} -2189 q^{-51} +321 q^{-53} +2244 q^{-55} +2098 q^{-57} +317 q^{-59} -1438 q^{-61} -1736 q^{-63} -624 q^{-65} +727 q^{-67} +1234 q^{-69} +688 q^{-71} -244 q^{-73} -766 q^{-75} -564 q^{-77} +2 q^{-79} +393 q^{-81} +378 q^{-83} +89 q^{-85} -167 q^{-87} -223 q^{-89} -84 q^{-91} +63 q^{-93} +102 q^{-95} +54 q^{-97} -13 q^{-99} -41 q^{-101} -32 q^{-103} +3 q^{-105} +19 q^{-107} +8 q^{-109} - q^{-111} -2 q^{-113} -4 q^{-115} -2 q^{-117} +4 q^{-119} -2 q^{-123} + q^{-125} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{16}+q^{12}-q^{10}+3 q^8+q^6+q^2-3+ q^{-2} -2 q^{-4} + q^{-6} +2 q^{-8} - q^{-10} + q^{-12} }[/math] |
| 1,1 | [math]\displaystyle{ q^{44}-4 q^{42}+12 q^{40}-28 q^{38}+54 q^{36}-96 q^{34}+150 q^{32}-214 q^{30}+280 q^{28}-336 q^{26}+366 q^{24}-352 q^{22}+299 q^{20}-192 q^{18}+42 q^{16}+138 q^{14}-321 q^{12}+486 q^{10}-622 q^8+698 q^6-714 q^4+662 q^2-550+398 q^{-2} -213 q^{-4} +36 q^{-6} +132 q^{-8} -256 q^{-10} +334 q^{-12} -360 q^{-14} +344 q^{-16} -304 q^{-18} +239 q^{-20} -174 q^{-22} +118 q^{-24} -74 q^{-26} +42 q^{-28} -20 q^{-30} +10 q^{-32} -4 q^{-34} + q^{-36} }[/math] |
| 2,0 | [math]\displaystyle{ q^{42}-2 q^{38}-2 q^{36}+2 q^{34}+3 q^{32}-4 q^{30}-3 q^{28}+6 q^{26}+5 q^{24}-6 q^{22}-3 q^{20}+8 q^{18}+5 q^{16}-8 q^{14}-q^{12}+5 q^{10}-6 q^8-5 q^6+2 q^4-3+7 q^{-2} +9 q^{-4} -3 q^{-6} -2 q^{-8} +9 q^{-10} + q^{-12} -12 q^{-14} - q^{-16} +6 q^{-18} - q^{-20} -5 q^{-22} +4 q^{-26} - q^{-30} + q^{-32} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{34}-2 q^{32}+q^{30}+3 q^{28}-8 q^{26}+3 q^{24}+6 q^{22}-13 q^{20}+6 q^{18}+11 q^{16}-13 q^{14}+6 q^{12}+11 q^{10}-7 q^8-q^6+4 q^4+q^2-6-5 q^{-2} +9 q^{-4} -5 q^{-6} -10 q^{-8} +16 q^{-10} - q^{-12} -10 q^{-14} +13 q^{-16} - q^{-18} -7 q^{-20} +5 q^{-22} -2 q^{-26} + q^{-28} }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{21}-q^{17}+q^{15}-q^{13}+4 q^{11}+q^9+3 q^7-2 q-3 q^{-1} -2 q^{-5} +2 q^{-7} +3 q^{-11} - q^{-13} + q^{-15} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{44}-q^{40}+q^{38}+q^{36}-4 q^{34}-5 q^{32}+2 q^{30}+2 q^{28}-7 q^{26}+15 q^{22}+4 q^{20}-7 q^{18}+7 q^{16}+10 q^{14}-8 q^{12}-8 q^{10}+7 q^8+q^6-11 q^4+4 q^2+9-10 q^{-2} -5 q^{-4} +12 q^{-6} -3 q^{-8} -11 q^{-10} +6 q^{-12} +10 q^{-14} -5 q^{-16} -5 q^{-18} +8 q^{-20} +4 q^{-22} -6 q^{-24} - q^{-26} +4 q^{-28} - q^{-30} - q^{-32} + q^{-34} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{26}-q^{22}-q^{20}+q^{18}-q^{16}+4 q^{14}+2 q^{12}+3 q^{10}+3 q^8-3 q^2-2-4 q^{-2} -2 q^{-6} +2 q^{-8} + q^{-10} + q^{-12} +3 q^{-14} - q^{-16} + q^{-18} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{34}+2 q^{32}-5 q^{30}+7 q^{28}-10 q^{26}+13 q^{24}-14 q^{22}+15 q^{20}-12 q^{18}+9 q^{16}-q^{14}-4 q^{12}+13 q^{10}-19 q^8+25 q^6-28 q^4+27 q^2-26+19 q^{-2} -13 q^{-4} +5 q^{-6} +2 q^{-8} -8 q^{-10} +13 q^{-12} -14 q^{-14} +15 q^{-16} -13 q^{-18} +11 q^{-20} -7 q^{-22} +4 q^{-24} -2 q^{-26} + q^{-28} }[/math] |
| 1,0 | [math]\displaystyle{ q^{56}-2 q^{52}-2 q^{50}+3 q^{48}+5 q^{46}-2 q^{44}-9 q^{42}-4 q^{40}+10 q^{38}+10 q^{36}-6 q^{34}-15 q^{32}-q^{30}+16 q^{28}+10 q^{26}-11 q^{24}-12 q^{22}+5 q^{20}+14 q^{18}-11 q^{14}-2 q^{12}+10 q^{10}+4 q^8-9 q^6-6 q^4+7 q^2+9-6 q^{-2} -11 q^{-4} +3 q^{-6} +12 q^{-8} -14 q^{-12} -6 q^{-14} +13 q^{-16} +13 q^{-18} -7 q^{-20} -15 q^{-22} +14 q^{-26} +7 q^{-28} -7 q^{-30} -9 q^{-32} + q^{-34} +6 q^{-36} +2 q^{-38} -2 q^{-40} -2 q^{-42} + q^{-46} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{46}-2 q^{44}+3 q^{42}-4 q^{40}+6 q^{38}-9 q^{36}+8 q^{34}-11 q^{32}+11 q^{30}-13 q^{28}+9 q^{26}-8 q^{24}+9 q^{22}-q^{20}+9 q^{16}-4 q^{14}+17 q^{12}-17 q^{10}+19 q^8-20 q^6+21 q^4-24 q^2+14-20 q^{-2} +12 q^{-4} -9 q^{-6} +2 q^{-8} -2 q^{-10} - q^{-12} +11 q^{-14} -7 q^{-16} +11 q^{-18} -11 q^{-20} +14 q^{-22} -9 q^{-24} +8 q^{-26} -9 q^{-28} +6 q^{-30} -3 q^{-32} +2 q^{-34} -2 q^{-36} + q^{-38} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+7 q^{72}-5 q^{70}-5 q^{68}+19 q^{66}-31 q^{64}+39 q^{62}-34 q^{60}+11 q^{58}+19 q^{56}-55 q^{54}+79 q^{52}-79 q^{50}+49 q^{48}-2 q^{46}-48 q^{44}+83 q^{42}-84 q^{40}+60 q^{38}-9 q^{36}-36 q^{34}+61 q^{32}-52 q^{30}+14 q^{28}+39 q^{26}-69 q^{24}+75 q^{22}-40 q^{20}-15 q^{18}+77 q^{16}-118 q^{14}+120 q^{12}-84 q^{10}+16 q^8+55 q^6-109 q^4+123 q^2-97+43 q^{-2} +15 q^{-4} -64 q^{-6} +72 q^{-8} -52 q^{-10} +6 q^{-12} +39 q^{-14} -60 q^{-16} +48 q^{-18} -8 q^{-20} -41 q^{-22} +79 q^{-24} -87 q^{-26} +65 q^{-28} -21 q^{-30} -29 q^{-32} +67 q^{-34} -77 q^{-36} +67 q^{-38} -34 q^{-40} +5 q^{-42} +19 q^{-44} -33 q^{-46} +32 q^{-48} -23 q^{-50} +13 q^{-52} -2 q^{-54} -4 q^{-56} +5 q^{-58} -6 q^{-60} +4 q^{-62} -2 q^{-64} + q^{-66} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 30"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^3+5 t^2-12 t+17-12 t^{-1} +5 t^{-2} - t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^6-z^4-z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 53, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^4-3 q^3+6 q^2-8 q+9-9 q^{-1} +8 q^{-2} -5 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^6+2 a^2 z^4+z^4 a^{-2} -4 z^4-a^4 z^2+5 a^2 z^2+2 z^2 a^{-2} -7 z^2-a^4+4 a^2+2 a^{-2} -4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^2 z^8+z^8+3 a^3 z^7+7 a z^7+4 z^7 a^{-1} +3 a^4 z^6+8 a^2 z^6+5 z^6 a^{-2} +10 z^6+a^5 z^5-3 a^3 z^5-9 a z^5-2 z^5 a^{-1} +3 z^5 a^{-3} -7 a^4 z^4-22 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} -23 z^4-2 a^5 z^3-3 a^3 z^3-2 z^3 a^{-1} -3 z^3 a^{-3} +5 a^4 z^2+16 a^2 z^2+5 z^2 a^{-2} -z^2 a^{-4} +17 z^2+a^5 z+2 a^3 z+a z+z a^{-1} +z a^{-3} -a^4-4 a^2-2 a^{-2} -4 }[/math] |
Vassiliev invariants
| V2 and V3: | (-1, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 9 30. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 30]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 30]] |
Out[3]= | PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10],X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12],X[12, 17, 13, 18], X[6, 14, 7, 13]] |
In[4]:= | GaussCode[Knot[9, 30]] |
Out[4]= | GaussCode[1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6] |
In[5]:= | BR[Knot[9, 30]] |
Out[5]= | BR[4, {-1, -1, 2, 2, -1, 2, -3, 2, -3}] |
In[6]:= | alex = Alexander[Knot[9, 30]][t] |
Out[6]= | -3 5 12 2 3 |
In[7]:= | Conway[Knot[9, 30]][z] |
Out[7]= | 2 4 6 1 - z - z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 30], Knot[11, NonAlternating, 130]} |
In[9]:= | {KnotDet[Knot[9, 30]], KnotSignature[Knot[9, 30]]} |
Out[9]= | {53, 0} |
In[10]:= | J=Jones[Knot[9, 30]][q] |
Out[10]= | -5 3 5 8 9 2 3 4 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 30], Knot[11, NonAlternating, 114]} |
In[12]:= | A2Invariant[Knot[9, 30]][q] |
Out[12]= | -16 -12 -10 3 -6 -2 2 4 6 8 |
In[13]:= | Kauffman[Knot[9, 30]][a, z] |
Out[13]= | 22 2 4 z z 3 5 2 z |
In[14]:= | {Vassiliev[2][Knot[9, 30]], Vassiliev[3][Knot[9, 30]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[9, 30]][q, t] |
Out[15]= | 5 1 2 1 3 2 5 3 |


