9 11

From Knot Atlas
Revision as of 19:14, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

9 10.gif

9_10

9 12.gif

9_12

9 11.gif Visit 9 11's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 11's page at Knotilus!

Visit 9 11's page at the original Knot Atlas!

9 11 Quick Notes


9 11 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X13,1,14,18 X5,15,6,14 X7,17,8,16 X15,7,16,6 X17,9,18,8
Gauss code -1, 4, -3, 1, -6, 8, -7, 9, -2, 3, -4, 2, -5, 6, -8, 7, -9, 5
Dowker-Thistlethwaite code 4 10 14 16 12 2 18 6 8
Conway Notation [4122]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-12]
Hyperbolic Volume 8.28859
A-Polynomial See Data:9 11/A-polynomial

[edit Notes for 9 11's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 4

[edit Notes for 9 11's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 33, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (4, 9)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 11. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
19         1-1
17        1 1
15       31 -2
13      21  1
11     33   0
9    32    1
7   13     2
5  23      -1
3 12       1
1 1        -1
-11         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 11]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 11]]
Out[3]=  
PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], 
 X[13, 1, 14, 18], X[5, 15, 6, 14], X[7, 17, 8, 16], X[15, 7, 16, 6], 

X[17, 9, 18, 8]]
In[4]:=
GaussCode[Knot[9, 11]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -6, 8, -7, 9, -2, 3, -4, 2, -5, 6, -8, 7, -9, 5]
In[5]:=
BR[Knot[9, 11]]
Out[5]=  
BR[4, {1, 1, 1, 1, -2, 1, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[9, 11]][t]
Out[6]=  
     -3   5    7            2    3

7 - t + -- - - - 7 t + 5 t - t

          2   t
t
In[7]:=
Conway[Knot[9, 11]][z]
Out[7]=  
       2    4    6
1 + 4 z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 11], Knot[11, NonAlternating, 95]}
In[9]:=
{KnotDet[Knot[9, 11]], KnotSignature[Knot[9, 11]]}
Out[9]=  
{33, 4}
In[10]:=
J=Jones[Knot[9, 11]][q]
Out[10]=  
             2      3      4      5      6      7      8    9
1 - 2 q + 3 q  - 4 q  + 6 q  - 5 q  + 5 q  - 4 q  + 2 q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 11]}
In[12]:=
A2Invariant[Knot[9, 11]][q]
Out[12]=  
     8      10      14    16    20    22    26    28
1 - q  + 2 q   + 2 q   + q   + q   - q   - q   - q
In[13]:=
Kauffman[Knot[9, 11]][a, z]
Out[13]=  
                                                    2       2      2

-2 3 -4 -2 z 2 z 2 z 2 z z z 4 z 6 z -- - -- - a - a - --- + --- + --- - --- - -- - --- + ---- + ---- +

8    6                11    9     7     5     3    10     8      6

a a a a a a a a a a

    2      2    3       3      3      3      3      4      4      4
 5 z    4 z    z     3 z    3 z    9 z    8 z    2 z    4 z    7 z
 ---- + ---- + --- - ---- - ---- + ---- + ---- + ---- - ---- - ---- - 
   4      2     11     9      7      5      3     10      8      6
  a      a     a      a      a      a      a     a       a      a

    4      4      5    5       5      5      6    6    6    6      7
 5 z    4 z    3 z    z    12 z    8 z    3 z    z    z    z    2 z
 ---- - ---- + ---- - -- - ----- - ---- + ---- + -- - -- + -- + ---- + 
   4      2      9     7     5       3      8     6    4    2     7
  a      a      a     a     a       a      a     a    a    a     a

    7      7    8    8
 4 z    2 z    z    z
 ---- + ---- + -- + --
   5      3     6    4
a a a a
In[14]:=
{Vassiliev[2][Knot[9, 11]], Vassiliev[3][Knot[9, 11]]}
Out[14]=  
{0, 9}
In[15]:=
Kh[Knot[9, 11]][q, t]
Out[15]=  
                          3
  3      5    1     q   q       5      7        7  2      9  2

2 q + 2 q + ---- + - + -- + 3 q t + q t + 3 q t + 3 q t +

                2   t   t
             q t

    9  3      11  3      11  4      13  4    13  5      15  5
 2 q  t  + 3 q   t  + 3 q   t  + 2 q   t  + q   t  + 3 q   t  + 

  15  6    17  6    19  7
q t + q t + q t