T(7,5)
|
|
Visit [[[:Template:KnotilusURL]] T(7,5)'s page] at Knotilus!
Visit T(7,5)'s page at the original Knot Atlas! | |
T(7,5) Quick Notes |
T(7,5) Further Notes and Views
Knot presentations
Planar diagram presentation | X25,3,26,2 X48,4,49,3 X15,5,16,4 X38,6,39,5 X49,27,50,26 X16,28,17,27 X39,29,40,28 X6,30,7,29 X17,51,18,50 X40,52,41,51 X7,53,8,52 X30,54,31,53 X41,19,42,18 X8,20,9,19 X31,21,32,20 X54,22,55,21 X9,43,10,42 X32,44,33,43 X55,45,56,44 X22,46,23,45 X33,11,34,10 X56,12,1,11 X23,13,24,12 X46,14,47,13 X1,35,2,34 X24,36,25,35 X47,37,48,36 X14,38,15,37 |
Gauss code | -25, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27, 28, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -2, -5, 9, 10, 11, 12, -16, -19, -22 |
Dowker-Thistlethwaite code | 34 -48 -38 52 42 -56 -46 4 50 -8 -54 12 2 -16 -6 20 10 -24 -14 28 18 -32 -22 36 26 -40 -30 44 |
Conway Notation | Data:T(7,5)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(7,5)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 16 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(7,5)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(7,5)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (48, 280) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 16 is the signature of T(7,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[7, 5]] |
Out[2]= | 28 |
In[3]:= | PD[TorusKnot[7, 5]] |
Out[3]= | PD[X[25, 3, 26, 2], X[48, 4, 49, 3], X[15, 5, 16, 4], X[38, 6, 39, 5],X[49, 27, 50, 26], X[16, 28, 17, 27], X[39, 29, 40, 28], X[6, 30, 7, 29], X[17, 51, 18, 50], X[40, 52, 41, 51], X[7, 53, 8, 52], X[30, 54, 31, 53], X[41, 19, 42, 18], X[8, 20, 9, 19], X[31, 21, 32, 20], X[54, 22, 55, 21], X[9, 43, 10, 42], X[32, 44, 33, 43], X[55, 45, 56, 44], X[22, 46, 23, 45], X[33, 11, 34, 10], X[56, 12, 1, 11], X[23, 13, 24, 12], X[46, 14, 47, 13], X[1, 35, 2, 34],X[24, 36, 25, 35], X[47, 37, 48, 36], X[14, 38, 15, 37]] |
In[4]:= | GaussCode[TorusKnot[7, 5]] |
Out[4]= | GaussCode[-25, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -3,-6, -9, 13, 14, 15, 16, -20, -23, -26, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27, 28, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -2,-5, 9, 10, 11, 12, -16, -19, -22] |
In[5]:= | BR[TorusKnot[7, 5]] |
Out[5]= | BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}] |
In[6]:= | alex = Alexander[TorusKnot[7, 5]][t] |
Out[6]= | -12 -11 -7 -6 |
In[7]:= | Conway[TorusKnot[7, 5]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[7, 5]], KnotSignature[TorusKnot[7, 5]]} |
Out[9]= | {1, 16} |
In[10]:= | J=Jones[TorusKnot[7, 5]][q] |
Out[10]= | 12 14 16 20 22 q + q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[7, 5]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[7, 5]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[7, 5]], Vassiliev[3][TorusKnot[7, 5]]} |
Out[14]= | {0, 280} |
In[15]:= | Kh[TorusKnot[7, 5]][q, t] |
Out[15]= | 23 25 2 27 4 29 3 31 |