9 31

From Knot Atlas
Revision as of 17:11, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

9 30.gif

9_30

9 32.gif

9_32

9 31.gif Visit 9 31's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 31's page at Knotilus!

Visit 9 31's page at the original Knot Atlas!

9 31 Quick Notes


9 31 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X11,1,12,18 X5,13,6,12 X17,7,18,6 X7,14,8,15 X13,16,14,17 X15,8,16,9 X9,2,10,3
Gauss code -1, 9, -2, 1, -4, 5, -6, 8, -9, 2, -3, 4, -7, 6, -8, 7, -5, 3
Dowker-Thistlethwaite code 4 10 12 14 2 18 16 8 6
Conway Notation [2111112]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 9, width is 4.

Braid index is 4.

A Morse Link Presentation:

9 31 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-2]
Hyperbolic Volume 11.6863
A-Polynomial See Data:9 31/A-polynomial

[edit Notes for 9 31's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 31's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 55, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n11, K11n22, K11n112, K11n127, ...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (2, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 31. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10123χ
5         1-1
3        2 2
1       31 -2
-1      52  3
-3     54   -1
-5    54    1
-7   35     2
-9  35      -2
-11 13       2
-13 3        -3
-151         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials