In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 32]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[15, 20, 16, 1],
X[7, 17, 8, 16], X[19, 7, 20, 6], X[9, 19, 10, 18], X[17, 9, 18, 8],
X[13, 10, 14, 11], X[11, 2, 12, 3]] |
In[3]:= | GaussCode[Knot[10, 32]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 6, -5, 8, -7, 9, -10, 2, -9, 3, -4, 5, -8,
7, -6, 4] |
In[4]:= | DTCode[Knot[10, 32]] |
Out[4]= | DTCode[4, 12, 14, 16, 18, 2, 10, 20, 8, 6] |
In[5]:= | br = BR[Knot[10, 32]] |
Out[5]= | BR[4, {1, 1, 1, -2, 1, -2, -2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 32]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 32]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 32]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 32]][t] |
Out[10]= | 2 8 15 2 3
19 - -- + -- - -- - 15 t + 8 t - 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 32]][z] |
Out[11]= | 2 4 6
1 - z - 4 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 32]} |
In[13]:= | {KnotDet[Knot[10, 32]], KnotSignature[Knot[10, 32]]} |
Out[13]= | {69, 0} |
In[14]:= | Jones[Knot[10, 32]][q] |
Out[14]= | -6 3 5 8 11 11 2 3 4
11 + q - -- + -- - -- + -- - -- - 9 q + 6 q - 3 q + q
5 4 3 2 q
q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 32]} |
In[16]:= | A2Invariant[Knot[10, 32]][q] |
Out[16]= | -18 -16 2 3 -4 -2 2 4 6 8 10
-2 + q - q - --- + -- + q + q + 2 q - 2 q + q + q - q +
10 8
q q
12
q |
In[17]:= | HOMFLYPT[Knot[10, 32]][a, z] |
Out[17]= | 2 4
-2 2 2 2 z 2 2 4 2 4 z 2 4
-1 + a + a - 3 z + ---- - 2 a z + 2 a z - 3 z + -- - 3 a z +
2 2
a a
4 4 6 2 6
a z - z - a z |
In[18]:= | Kauffman[Knot[10, 32]][a, z] |
Out[18]= | 2 2
-2 2 z z 3 5 2 z 4 z
-1 - a - a + -- + - - a z - 2 a z - a z + 7 z - -- + ---- +
3 a 4 2
a a a
3 4 4
6 2 3 z 3 3 3 5 3 4 z 6 z
2 a z - ---- + 7 a z + 13 a z + 9 a z - 11 z + -- - ---- +
3 4 2
a a a
5 5
2 4 4 4 6 4 3 z 4 z 5 3 5
2 a z + 3 a z - 3 a z + ---- - ---- - 15 a z - 18 a z -
3 a
a
6 7
5 5 6 5 z 2 6 4 6 6 6 5 z 7
10 a z + 3 z + ---- - 10 a z - 7 a z + a z + ---- + 7 a z +
2 a
a
3 7 5 7 8 2 8 4 8 9 3 9
5 a z + 3 a z + 3 z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 32]], Vassiliev[3][Knot[10, 32]]} |
Out[19]= | {-1, 0} |
In[20]:= | Kh[Knot[10, 32]][q, t] |
Out[20]= | 6 1 2 1 3 2 5 3
- + 6 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3
q t q t q t q t q t q t q t
6 5 5 6 3 3 2 5 2
----- + ----- + ---- + --- + 4 q t + 5 q t + 2 q t + 4 q t +
5 2 3 2 3 q t
q t q t q t
5 3 7 3 9 4
q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 32], 2][q] |
Out[21]= | -18 3 10 12 8 33 21 32 65 22 66
86 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- +
17 15 14 13 12 11 10 9 8 7
q q q q q q q q q q
93 11 95 101 6 103 2 3 4
-- - -- - -- + --- + -- - --- + 16 q - 83 q + 55 q + 15 q -
6 5 4 3 2 q
q q q q q
5 6 7 8 9 10 11 12
47 q + 25 q + 8 q - 17 q + 7 q + 2 q - 3 q + q |