In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 115]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[20, 15, 1, 16], X[16, 7, 17, 8],
X[8, 19, 9, 20], X[18, 11, 19, 12], X[10, 4, 11, 3], X[4, 10, 5, 9],
X[12, 17, 13, 18], X[2, 14, 3, 13]] |
In[3]:= | GaussCode[Knot[10, 115]] |
Out[3]= | GaussCode[1, -10, 7, -8, 2, -1, 4, -5, 8, -7, 6, -9, 10, -2, 3, -4, 9,
-6, 5, -3] |
In[4]:= | DTCode[Knot[10, 115]] |
Out[4]= | DTCode[6, 10, 14, 16, 4, 18, 2, 20, 12, 8] |
In[5]:= | br = BR[Knot[10, 115]] |
Out[5]= | BR[5, {1, -2, 1, 3, 2, 2, -4, -3, 2, -3, -3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 115]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 115]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 115]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {NegativeAmphicheiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 115]][t] |
Out[10]= | -3 9 26 2 3
37 - t + -- - -- - 26 t + 9 t - t
2 t
t |
In[11]:= | Conway[Knot[10, 115]][z] |
Out[11]= | 2 4 6
1 + z + 3 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 115]} |
In[13]:= | {KnotDet[Knot[10, 115]], KnotSignature[Knot[10, 115]]} |
Out[13]= | {109, 0} |
In[14]:= | Jones[Knot[10, 115]][q] |
Out[14]= | -5 4 9 14 17 2 3 4 5
19 - q + -- - -- + -- - -- - 17 q + 14 q - 9 q + 4 q - q
4 3 2 q
q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 115]} |
In[16]:= | A2Invariant[Knot[10, 115]][q] |
Out[16]= | -16 -14 2 4 2 -6 2 5 2 4 6
-1 - q + q + --- - --- + -- - q - -- + -- + 5 q - 2 q - q +
12 10 8 4 2
q q q q q
8 10 12 14 16
2 q - 4 q + 2 q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 115]][a, z] |
Out[17]= | 2 2 4
-2 2 2 z z 2 2 4 2 4 2 z 2 4 6
3 - a - a + z - -- + -- + a z - a z - z + ---- + 2 a z - z
4 2 2
a a a |
In[18]:= | Kauffman[Knot[10, 115]][a, z] |
Out[18]= | 2 2
-2 2 2 z 5 z 3 2 2 z z 2 2
3 + a + a - --- - --- - 5 a z - 2 a z - 6 z + ---- - -- - a z +
3 a 4 2
a a a
3 3 3
4 2 z 8 z 22 z 3 3 3 5 3 4
2 a z - -- + ---- + ----- + 22 a z + 8 a z - a z + 12 z -
5 3 a
a a
4 4 5 5 5
5 z z 2 4 4 4 z 13 z 34 z 5
---- + -- + a z - 5 a z + -- - ----- - ----- - 34 a z -
4 2 5 3 a
a a a a
6 6 7
3 5 5 5 6 4 z 9 z 2 6 4 6 8 z
13 a z + a z - 26 z + ---- - ---- - 9 a z + 4 a z + ---- +
4 2 3
a a a
7 8 9
13 z 7 3 7 8 8 z 2 8 3 z 9
----- + 13 a z + 8 a z + 16 z + ---- + 8 a z + ---- + 3 a z
a 2 a
a |
In[19]:= | {Vassiliev[2][Knot[10, 115]], Vassiliev[3][Knot[10, 115]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[10, 115]][q, t] |
Out[20]= | 10 1 3 1 6 3 8 6
-- + 10 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
9 8 3 3 2 5 2 5 3 7 3
---- + --- + 8 q t + 9 q t + 6 q t + 8 q t + 3 q t + 6 q t +
3 q t
q t
7 4 9 4 11 5
q t + 3 q t + q t |
In[21]:= | ColouredJones[Knot[10, 115], 2][q] |
Out[21]= | -15 4 4 11 33 13 64 101 6 172 166
321 + q - --- + --- + --- - --- + --- + -- - --- - -- + --- - --- -
14 13 12 11 10 9 8 7 6 5
q q q q q q q q q q
70 278 181 142 2 3 4 5
-- + --- - --- - --- - 142 q - 181 q + 278 q - 70 q - 166 q +
4 3 2 q
q q q
6 7 8 9 10 11 12 13
172 q - 6 q - 101 q + 64 q + 13 q - 33 q + 11 q + 4 q -
14 15
4 q + q |