| In[1]:=     | << KnotTheory` | 
| Loading KnotTheory` (version of August 29, 2005, 15:27:48)... | 
| In[2]:= | PD[Knot[10, 100]] | 
| Out[2]=   | PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[14, 7, 15, 8], 
 X[10, 3, 11, 4], X[16, 9, 17, 10], X[4, 11, 5, 12], X[8, 15, 9, 16], 
X[12, 19, 13, 20], X[2, 18, 3, 17]] | 
| In[3]:= | GaussCode[Knot[10, 100]] | 
| Out[3]=   | GaussCode[1, -10, 5, -7, 2, -1, 4, -8, 6, -5, 7, -9, 3, -4, 8, -6, 10, 
  -2, 9, -3] | 
| In[4]:= | DTCode[Knot[10, 100]] | 
| Out[4]=   | DTCode[6, 10, 18, 14, 16, 4, 20, 8, 2, 12] | 
| In[5]:= | br = BR[Knot[10, 100]] | 
| Out[5]=   | BR[3, {-1, -1, -1, 2, -1, -1, 2, -1, -1, 2}] | 
| In[6]:= | {First[br], Crossings[br]} | 
| Out[6]=   | {3, 10} | 
| In[7]:= | BraidIndex[Knot[10, 100]] | 
| Out[7]=   | 3 | 
| In[8]:= | Show[DrawMorseLink[Knot[10, 100]]] | 
|  |  | 
| Out[8]= | -Graphics- | 
| In[9]:= | (#[Knot[10, 100]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} | 
| Out[9]=   | {Reversible, {2, 3}, 4, 3, NotAvailable, 1} | 
| In[10]:= | alex = Alexander[Knot[10, 100]][t] | 
| Out[10]=   |       -4   4    9    12             2      3    4
13 + t   - -- + -- - -- - 12 t + 9 t  - 4 t  + t
            3    2   t
t    t | 
| In[11]:= | Conway[Knot[10, 100]][z] | 
| Out[11]=   |        2      4      6    8
1 + 4 z  + 5 z  + 4 z  + z | 
| In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[12]=   | {Knot[10, 100]} | 
| In[13]:= | {KnotDet[Knot[10, 100]], KnotSignature[Knot[10, 100]]} | 
| Out[13]=   | {65, -4} | 
| In[14]:= | Jones[Knot[10, 100]][q] | 
| Out[14]=   |      -9   3    6    8    10   11   9    8    5
3 - q   + -- - -- + -- - -- + -- - -- + -- - - - q
           8    7    6    5    4    3    2   q
q    q    q    q    q    q    q | 
| In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[15]=   | {Knot[10, 100]} | 
| In[16]:= | A2Invariant[Knot[10, 100]][q] | 
| Out[16]=   |      -26    -24    2     -18    -16    3     -12    4     -6    -4
1 - q    + q    - --- - q    - q    + --- - q    + --- + q   + q   - 
                   22                  14           10
                 q                   q            q
  -2    2
q   - q | 
| In[17]:= | HOMFLYPT[Knot[10, 100]][a, z] | 
| Out[17]=   |   2      4      6      2  2       4  2      6  2      2  4       4  4
-a  + 5 a  - 3 a  - 4 a  z  + 13 a  z  - 5 a  z  - 4 a  z  + 13 a  z  - 
     6  4    2  6      4  6    6  6    4  8
4 a  z  - a  z  + 6 a  z  - a  z  + a  z | 
| In[18]:= | Kauffman[Knot[10, 100]][a, z] | 
| Out[18]=   |  2      4      6              3        5        7        9
a  + 5 a  + 3 a  - 2 a z - 6 a  z - 8 a  z - 2 a  z + 2 a  z - 
     2  2       4  2      6  2      8  2        3       3  3
 7 a  z  - 17 a  z  - 6 a  z  + 4 a  z  + 5 a z  + 20 a  z  + 
     5  3      7  3      9  3    11  3       2  4       4  4
 26 a  z  + 5 a  z  - 5 a  z  + a   z  + 17 a  z  + 36 a  z  + 
    6  4       8  4      10  4        5       3  5       5  5
 5 a  z  - 11 a  z  + 3 a   z  - 4 a z  - 11 a  z  - 27 a  z  - 
     7  5      9  5       2  6       4  6       6  6      8  6
 14 a  z  + 6 a  z  - 13 a  z  - 33 a  z  - 12 a  z  + 8 a  z  + 
    7      3  7      5  7      7  7      2  8      4  8      6  8
 a z  - 3 a  z  + 4 a  z  + 8 a  z  + 3 a  z  + 9 a  z  + 6 a  z  + 
    3  9      5  9
2 a  z  + 2 a  z | 
| In[19]:= | {Vassiliev[2][Knot[10, 100]], Vassiliev[3][Knot[10, 100]]} | 
| Out[19]=   | {4, -7} | 
| In[20]:= | Kh[Knot[10, 100]][q, t] | 
| Out[20]=   | 4    5      1        2        1        4        2        4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    19  7    17  6    15  6    15  5    13  5    13  4
 q    q    q   t    q   t    q   t    q   t    q   t    q   t
    4        6        4       5       6      4      5     2 t   3 t
 ------ + ------ + ----- + ----- + ----- + ---- + ---- + --- + --- + 
  11  4    11  3    9  3    9  2    7  2    7      5      3     q
 q   t    q   t    q  t    q  t    q  t    q  t   q  t   q
  2
 t         2    3  3
 -- + 2 q t  + q  t
q | 
| In[21]:= | ColouredJones[Knot[10, 100], 2][q] | 
| Out[21]=   |        -25    3     3     4    14    13     6    32    34     7
-14 + q    - --- + --- + --- - --- + --- + --- - --- + --- + --- - 
              24    23    22    21    20    19    18    17    16
            q     q     q     q     q     q     q     q     q
 57    51    19    77    49    37    81   33   47   66   12   45
 --- + --- + --- - --- + --- + --- - -- + -- + -- - -- + -- + -- - 
  15    14    13    12    11    10    9    8    7    6    5    4
 q     q     q     q     q     q     q    q    q    q    q    q
 40   5    30             2    3      4    5
 -- - -- + -- - 9 q + 11 q  - q  - 3 q  + q
  3    2   q
q    q |