In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 78]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[11, 17, 12, 16],
X[15, 13, 16, 12], X[17, 20, 18, 1], X[9, 18, 10, 19],
X[19, 10, 20, 11], X[13, 6, 14, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 78]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -7, 8, -4, 5, -9, 3, -5, 4, -6,
7, -8, 6] |
In[4]:= | DTCode[Knot[10, 78]] |
Out[4]= | DTCode[4, 8, 14, 2, 18, 16, 6, 12, 20, 10] |
In[5]:= | br = BR[Knot[10, 78]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, -1, 3, -2, -4, 3, -4, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 78]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 78]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 78]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 78]][t] |
Out[10]= | -3 7 16 2 3
21 - t + -- - -- - 16 t + 7 t - t
2 t
t |
In[11]:= | Conway[Knot[10, 78]][z] |
Out[11]= | 2 4 6
1 + 3 z + z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 78], Knot[11, NonAlternating, 98],
Knot[11, NonAlternating, 105]} |
In[13]:= | {KnotDet[Knot[10, 78]], KnotSignature[Knot[10, 78]]} |
Out[13]= | {69, -4} |
In[14]:= | Jones[Knot[10, 78]][q] |
Out[14]= | -10 3 5 9 11 11 11 8 6 3
1 + q - -- + -- - -- + -- - -- + -- - -- + -- - -
9 8 7 6 5 4 3 2 q
q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 78]} |
In[16]:= | A2Invariant[Knot[10, 78]][q] |
Out[16]= | -32 -30 2 -26 -24 3 2 2 2 -12
1 + q + q - --- - q - q - --- + --- + --- + --- - q +
28 22 20 16 14
q q q q q
3 2 -6 -4 -2
--- - -- + q + q - q
10 8
q q |
In[17]:= | HOMFLYPT[Knot[10, 78]][a, z] |
Out[17]= | 2 4 6 8 10 2 2 4 2 6 2 8 2
a - a + 4 a - 4 a + a + 2 a z - 3 a z + 7 a z - 3 a z +
2 4 4 4 6 4 4 6
a z - 3 a z + 3 a z - a z |
In[18]:= | Kauffman[Knot[10, 78]][a, z] |
Out[18]= | 2 4 6 8 10 3 5 7 9
-a - a - 4 a - 4 a - a - a z - 3 a z + 2 a z + 6 a z +
11 2 2 4 2 6 2 8 2 10 2 12 2
2 a z + 3 a z + 6 a z + 11 a z + 10 a z + a z - a z +
3 3 5 3 7 3 9 3 11 3 2 4
7 a z + 15 a z + 5 a z - 7 a z - 4 a z - 3 a z -
4 4 6 4 8 4 10 4 12 4 3 5
4 a z - 7 a z - 10 a z - 3 a z + a z - 9 a z -
5 5 7 5 11 5 2 6 4 6 6 6
21 a z - 15 a z + 3 a z + a z - 5 a z - 8 a z +
8 6 10 6 3 7 5 7 7 7 9 7
2 a z + 4 a z + 3 a z + 6 a z + 7 a z + 4 a z +
4 8 6 8 8 8 5 9 7 9
3 a z + 6 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 78]], Vassiliev[3][Knot[10, 78]]} |
Out[19]= | {3, -5} |
In[20]:= | Kh[Knot[10, 78]][q, t] |
Out[20]= | 3 4 1 2 1 3 2 6
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ +
5 3 21 8 19 7 17 7 17 6 15 6 15 5
q q q t q t q t q t q t q t
3 5 6 6 5 5 6 3
------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- +
13 5 13 4 11 4 11 3 9 3 9 2 7 2 7
q t q t q t q t q t q t q t q t
5 t 2 t 2
---- + -- + --- + q t
5 3 q
q t q |
In[21]:= | ColouredJones[Knot[10, 78], 2][q] |
Out[21]= | -28 3 -26 7 14 7 20 41 18 45 79
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- +
27 25 24 23 22 21 20 19 18
q q q q q q q q q
24 75 104 16 93 100 -11 91 73 16 69 37
--- + --- - --- + --- + --- - --- - q + --- - -- - -- + -- - -- -
17 16 15 14 13 12 10 9 8 7 6
q q q q q q q q q q q
21 37 10 13 11 2
-- + -- - -- - -- + -- - 3 q + q
5 4 3 2 q
q q q q |