In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 118]] |
Out[2]= | PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[12, 19, 13, 20],
X[14, 7, 15, 8], X[8, 3, 9, 4], X[2, 16, 3, 15], X[10, 18, 11, 17],
X[16, 10, 17, 9], X[4, 11, 5, 12]] |
In[3]:= | GaussCode[Knot[10, 118]] |
Out[3]= | GaussCode[1, -7, 6, -10, 2, -1, 5, -6, 9, -8, 10, -4, 3, -5, 7, -9, 8,
-2, 4, -3] |
In[4]:= | DTCode[Knot[10, 118]] |
Out[4]= | DTCode[6, 8, 18, 14, 16, 4, 20, 2, 10, 12] |
In[5]:= | br = BR[Knot[10, 118]] |
Out[5]= | BR[3, {1, 1, -2, 1, -2, 1, -2, -2, 1, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 118]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 118]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 118]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {NegativeAmphicheiral, 1, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 118]][t] |
Out[10]= | -4 5 12 19 2 3 4
23 + t - -- + -- - -- - 19 t + 12 t - 5 t + t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 118]][z] |
Out[11]= | 4 6 8
1 + 2 z + 3 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 118], Knot[11, Alternating, 257]} |
In[13]:= | {KnotDet[Knot[10, 118]], KnotSignature[Knot[10, 118]]} |
Out[13]= | {97, 0} |
In[14]:= | Jones[Knot[10, 118]][q] |
Out[14]= | -5 4 8 12 15 2 3 4 5
17 - q + -- - -- + -- - -- - 15 q + 12 q - 8 q + 4 q - q
4 3 2 q
q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 118]} |
In[16]:= | A2Invariant[Knot[10, 118]][q] |
Out[16]= | -14 2 2 2 2 4 2 4 8 10
-3 - q + --- - --- + -- - -- + -- + 4 q - 2 q + 2 q - 2 q +
12 10 8 4 2
q q q q q
12 14
2 q - q |
In[17]:= | HOMFLYPT[Knot[10, 118]][a, z] |
Out[17]= | 2 4 6
2 2 z 2 2 4 3 z 2 4 6 z 2 6
1 + 4 z - ---- - 2 a z + 8 z - ---- - 3 a z + 5 z - -- - a z +
2 2 2
a a a
8
z |
In[18]:= | Kauffman[Knot[10, 118]][a, z] |
Out[18]= | 2 2 3
z 3 z 3 2 z 2 z 2 2 4 2 z
1 - -- - --- - 3 a z - a z - 6 z + -- - ---- - 2 a z + a z - -- +
3 a 4 2 5
a a a a
3 3 4 4
5 z 15 z 3 3 3 5 3 4 6 z 6 z
---- + ----- + 15 a z + 5 a z - a z + 24 z - ---- + ---- +
3 a 4 2
a a a
5 5 5
2 4 4 4 z 12 z 20 z 5 3 5 5 5
6 a z - 6 a z + -- - ----- - ----- - 20 a z - 12 a z + a z -
5 3 a
a a
6 6 7 7
6 4 z 11 z 2 6 4 6 7 z 6 z 7
30 z + ---- - ----- - 11 a z + 4 a z + ---- + ---- + 6 a z +
4 2 3 a
a a a
8 9
3 7 8 7 z 2 8 3 z 9
7 a z + 14 z + ---- + 7 a z + ---- + 3 a z
2 a
a |
In[19]:= | {Vassiliev[2][Knot[10, 118]], Vassiliev[3][Knot[10, 118]]} |
Out[19]= | {0, 0} |
In[20]:= | Kh[Knot[10, 118]][q, t] |
Out[20]= | 9 1 3 1 5 3 7 5
- + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
8 7 3 3 2 5 2 5 3 7 3
---- + --- + 7 q t + 8 q t + 5 q t + 7 q t + 3 q t + 5 q t +
3 q t
q t
7 4 9 4 11 5
q t + 3 q t + q t |
In[21]:= | ColouredJones[Knot[10, 118], 2][q] |
Out[21]= | -15 4 3 11 27 8 52 76 8 130 122
241 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - --- -
14 13 12 11 10 9 8 7 6 5
q q q q q q q q q q
55 208 134 107 2 3 4 5
-- + --- - --- - --- - 107 q - 134 q + 208 q - 55 q - 122 q +
4 3 2 q
q q q
6 7 8 9 10 11 12 13
130 q - 8 q - 76 q + 52 q + 8 q - 27 q + 11 q + 3 q -
14 15
4 q + q |