In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[8, 2]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[7, 14, 8, 15], X[9, 16, 10, 1], X[13, 6, 14, 7], X[15, 8, 16, 9]] |
In[3]:= | GaussCode[Knot[8, 2]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 7, -5, 8, -6, 3, -4, 2, -7, 5, -8, 6] |
In[4]:= | DTCode[Knot[8, 2]] |
Out[4]= | DTCode[4, 10, 12, 14, 16, 2, 6, 8] |
In[5]:= | br = BR[Knot[8, 2]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -1, 2, -1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[8, 2]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[8, 2]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[8, 2]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, {4, 5}, 1} |
In[10]:= | alex = Alexander[Knot[8, 2]][t] |
Out[10]= | -3 3 3 2 3
3 - t + -- - - - 3 t + 3 t - t
2 t
t |
In[11]:= | Conway[Knot[8, 2]][z] |
Out[11]= | 4 6
1 - 3 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 2], Knot[11, NonAlternating, 6]} |
In[13]:= | {KnotDet[Knot[8, 2]], KnotSignature[Knot[8, 2]]} |
Out[13]= | {17, -4} |
In[14]:= | Jones[Knot[8, 2]][q] |
Out[14]= | -8 2 2 3 3 2 2 1
1 + q - -- + -- - -- + -- - -- + -- - -
7 6 5 4 3 2 q
q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 2]} |
In[16]:= | A2Invariant[Knot[8, 2]][q] |
Out[16]= | -24 -18 -16 -12 -10 -6 -4 -2
1 + q - q - q - q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[8, 2]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 2 4 4 4
3 a - 3 a + a + 4 a z - 7 a z + 3 a z + a z - 5 a z +
6 4 4 6
a z - a z |
In[18]:= | Kauffman[Knot[8, 2]][a, z] |
Out[18]= | 2 4 6 3 5 7 9 2 2 4 2
-3 a - 3 a - a + a z + a z - a z - a z + 7 a z + 12 a z +
6 2 8 2 10 2 3 3 5 3 7 3 9 3
3 a z - a z + a z + 3 a z - a z - 2 a z + 2 a z -
2 4 4 4 6 4 8 4 3 5 5 5
5 a z - 12 a z - 5 a z + 2 a z - 4 a z - 2 a z +
7 5 2 6 4 6 6 6 3 7 5 7
2 a z + a z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[8, 2]], Vassiliev[3][Knot[8, 2]]} |
Out[19]= | {0, 1} |
In[20]:= | Kh[Knot[8, 2]][q, t] |
Out[20]= | -5 2 1 1 1 1 1 2
q + -- + ------ + ------ + ------ + ------ + ------ + ------ +
3 17 6 15 5 13 5 13 4 11 4 11 3
q q t q t q t q t q t q t
1 1 2 1 1 t 2
----- + ----- + ----- + ---- + ---- + -- + q t
9 3 9 2 7 2 7 5 3
q t q t q t q t q t q |
In[21]:= | ColouredJones[Knot[8, 2], 2][q] |
Out[21]= | -22 2 3 4 2 3 6 3 4 7 2
-1 + q - --- + --- - --- + --- + --- - --- + --- + --- - --- + --- +
21 19 18 17 16 15 14 13 12 11
q q q q q q q q q q
5 7 -8 5 5 5 3 -2 3 2
--- - -- + q + -- - -- + -- - -- - q + - - q + q
10 9 7 6 4 3 q
q q q q q q |