In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 81]] |
Out[2]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[16, 9, 17, 10],
X[20, 17, 1, 18], X[18, 13, 19, 14], X[14, 19, 15, 20],
X[10, 15, 11, 16], X[6, 12, 7, 11], X[2, 8, 3, 7]] |
In[3]:= | GaussCode[Knot[10, 81]] |
Out[3]= | GaussCode[1, -10, 2, -1, 3, -9, 10, -2, 4, -8, 9, -3, 6, -7, 8, -4, 5,
-6, 7, -5] |
In[4]:= | DTCode[Knot[10, 81]] |
Out[4]= | DTCode[4, 8, 12, 2, 16, 6, 18, 10, 20, 14] |
In[5]:= | br = BR[Knot[10, 81]] |
Out[5]= | BR[5, {1, 1, -2, 1, 3, 2, 2, -4, -3, -3, -3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 81]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 81]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 81]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {NegativeAmphicheiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 81]][t] |
Out[10]= | -3 8 20 2 3
27 - t + -- - -- - 20 t + 8 t - t
2 t
t |
In[11]:= | Conway[Knot[10, 81]][z] |
Out[11]= | 2 4 6
1 + 3 z + 2 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 81]} |
In[13]:= | {KnotDet[Knot[10, 81]], KnotSignature[Knot[10, 81]]} |
Out[13]= | {85, 0} |
In[14]:= | Jones[Knot[10, 81]][q] |
Out[14]= | -5 3 7 11 13 2 3 4 5
15 - q + -- - -- + -- - -- - 13 q + 11 q - 7 q + 3 q - q
4 3 2 q
q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 81], Knot[10, 109]} |
In[16]:= | A2Invariant[Knot[10, 81]][q] |
Out[16]= | -16 -12 3 2 -4 4 2 4 8 10
-1 - q + q - --- + -- - q + -- + 4 q - q + 2 q - 3 q +
10 8 2
q q q
12 16
q - q |
In[17]:= | HOMFLYPT[Knot[10, 81]][a, z] |
Out[17]= | 2 2
-4 -2 2 4 2 z 3 z 2 2 4 2 4
1 - a + a + a - a - z - -- + ---- + 3 a z - a z - 2 z +
4 2
a a
4
2 z 2 4 6
---- + 2 a z - z
2
a |
In[18]:= | Kauffman[Knot[10, 81]][a, z] |
Out[18]= | -4 -2 2 4 z 2 z 8 z 3 5
1 - a - a - a - a + -- - --- - --- - 8 a z - 2 a z + a z +
5 3 a
a a
2 2 3 3 3
2 3 z 6 z 2 2 4 2 2 z 5 z 25 z
6 z + ---- + ---- + 6 a z + 3 a z - ---- + ---- + ----- +
4 2 5 3 a
a a a a
4 4
3 3 3 5 3 4 5 z 9 z 2 4
25 a z + 5 a z - 2 a z - 8 z - ---- - ---- - 9 a z -
4 2
a a
5 5 5
4 4 z 8 z 31 z 5 3 5 5 5 6
5 a z + -- - ---- - ----- - 31 a z - 8 a z + a z - 6 z +
5 3 a
a a
6 7 7 8
3 z 4 6 5 z 13 z 7 3 7 8 4 z
---- + 3 a z + ---- + ----- + 13 a z + 5 a z + 8 z + ---- +
4 3 a 2
a a a
9
2 8 z 9
4 a z + -- + a z
a |
In[19]:= | {Vassiliev[2][Knot[10, 81]], Vassiliev[3][Knot[10, 81]]} |
Out[19]= | {3, 0} |
In[20]:= | Kh[Knot[10, 81]][q, t] |
Out[20]= | 8 1 2 1 5 2 6 5
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
7 6 3 3 2 5 2 5 3 7 3
---- + --- + 6 q t + 7 q t + 5 q t + 6 q t + 2 q t + 5 q t +
3 q t
q t
7 4 9 4 11 5
q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 81], 2][q] |
Out[21]= | -15 3 2 9 21 4 43 60 10 108 98
199 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - -- -
14 13 12 11 10 9 8 7 6 5
q q q q q q q q q q
48 172 109 89 2 3 4 5
-- + --- - --- - -- - 89 q - 109 q + 172 q - 48 q - 98 q +
4 3 2 q
q q q
6 7 8 9 10 11 12 13
108 q - 10 q - 60 q + 43 q + 4 q - 21 q + 9 q + 2 q -
14 15
3 q + q |