In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 7]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],
X[11, 20, 12, 1], X[19, 6, 20, 7], X[7, 18, 8, 19], X[9, 16, 10, 17],
X[15, 10, 16, 11], X[17, 8, 18, 9]] |
In[3]:= | GaussCode[Knot[10, 7]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 6, -7, 10, -8, 9, -5, 3, -4, 2, -9, 8, -10,
7, -6, 5] |
In[4]:= | DTCode[Knot[10, 7]] |
Out[4]= | DTCode[4, 12, 14, 18, 16, 20, 2, 10, 8, 6] |
In[5]:= | br = BR[Knot[10, 7]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, -3, 2, -3, -3, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 7]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 7]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 7]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 7]][t] |
Out[10]= | 3 11 2
-15 - -- + -- + 11 t - 3 t
2 t
t |
In[11]:= | Conway[Knot[10, 7]][z] |
Out[11]= | 2 4
1 - z - 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 7], Knot[11, Alternating, 59], Knot[11, NonAlternating, 3]} |
In[13]:= | {KnotDet[Knot[10, 7]], KnotSignature[Knot[10, 7]]} |
Out[13]= | {43, -2} |
In[14]:= | Jones[Knot[10, 7]][q] |
Out[14]= | -9 2 3 5 6 7 7 5 4
-2 + q - -- + -- - -- + -- - -- + -- - -- + - + q
8 7 6 5 4 3 2 q
q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 7]} |
In[16]:= | A2Invariant[Knot[10, 7]][q] |
Out[16]= | -28 -22 2 -18 -14 -12 -8 -6 -4 2 4
q + q - --- - q - q + q + q + q - q + -- + q
20 2
q q |
In[17]:= | HOMFLYPT[Knot[10, 7]][a, z] |
Out[17]= | 4 6 8 2 2 2 6 2 8 2 2 4 4 4
1 + a - 2 a + a + z - a z - 2 a z + a z - a z - a z -
6 4
a z |
In[18]:= | Kauffman[Knot[10, 7]][a, z] |
Out[18]= | 4 6 8 5 7 9 2 2 2
1 + a + 2 a + a - 2 a z - 5 a z - 3 a z - 2 z - 2 a z -
4 2 6 2 8 2 10 2 3 3 3 5 3
4 a z - 10 a z - 3 a z + 3 a z - 3 a z + a z + 6 a z +
7 3 9 3 4 2 4 4 4 6 4 8 4
10 a z + 8 a z + z - a z + 8 a z + 20 a z + 6 a z -
10 4 5 3 5 5 5 7 5 9 5 2 6
4 a z + 2 a z - 2 a z - 2 a z - 6 a z - 8 a z + 2 a z -
4 6 6 6 8 6 10 6 3 7 5 7 7 7
5 a z - 15 a z - 7 a z + a z + 2 a z - a z - a z +
9 7 4 8 6 8 8 8 5 9 7 9
2 a z + 2 a z + 4 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 7]], Vassiliev[3][Knot[10, 7]]} |
Out[19]= | {-1, 3} |
In[20]:= | Kh[Knot[10, 7]][q, t] |
Out[20]= | 2 3 1 1 1 2 1 3 2
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
3 q 19 8 17 7 15 7 15 6 13 6 13 5 11 5
q q t q t q t q t q t q t q t
3 3 4 3 3 4 2 3 t
------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + - +
11 4 9 4 9 3 7 3 7 2 5 2 5 3 q
q t q t q t q t q t q t q t q t
3 2
q t + q t |
In[21]:= | ColouredJones[Knot[10, 7], 2][q] |
Out[21]= | -26 2 5 7 2 14 11 9 24 11 19
-6 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- +
25 23 22 21 20 19 18 17 16 15
q q q q q q q q q q
31 7 28 34 3 31 30 24 20 -4 14 11
--- - --- - --- + --- - --- - -- + -- - -- + -- + q - -- + -- +
14 13 12 11 10 9 8 6 5 3 2
q q q q q q q q q q q
3 4
5 q - 2 q + q |