8 15

From Knot Atlas
Revision as of 20:07, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

8 14.gif

8_14

8 16.gif

8_16

8 15.gif Visit 8 15's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 15's page at Knotilus!

Visit 8 15's page at the original Knot Atlas!


Two trefoil knots along a closed loop, mutually interlinked. (See also 10 120.)



Symmetrical depiction.

Knot presentations

Planar diagram presentation X1425 X3849 X5,12,6,13 X13,16,14,1 X9,14,10,15 X15,10,16,11 X11,6,12,7 X7283
Gauss code -1, 8, -2, 1, -3, 7, -8, 2, -5, 6, -7, 3, -4, 5, -6, 4
Dowker-Thistlethwaite code 4 8 12 2 14 6 16 10
Conway Notation [21,21,2]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4.

Braid index is 4.

A Morse Link Presentation:

8 15 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-13][3]
Hyperbolic Volume 9.93065
A-Polynomial See Data:8 15/A-polynomial

[edit Notes for 8 15's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant -4

[edit Notes for 8 15's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 3 t^2-8 t+11-8 t^{-1} +3 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 3 z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 33, -4 }
Jones polynomial [math]\displaystyle{ q^{-2} -2 q^{-3} +5 q^{-4} -5 q^{-5} +6 q^{-6} -6 q^{-7} +4 q^{-8} -3 q^{-9} + q^{-10} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ a^{10}-3 z^2 a^8-4 a^8+2 z^4 a^6+5 z^2 a^6+3 a^6+z^4 a^4+2 z^2 a^4+a^4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^4 a^{12}-z^2 a^{12}+3 z^5 a^{11}-5 z^3 a^{11}+2 z a^{11}+3 z^6 a^{10}-3 z^4 a^{10}-a^{10}+z^7 a^9+6 z^5 a^9-14 z^3 a^9+8 z a^9+6 z^6 a^8-10 z^4 a^8+8 z^2 a^8-4 a^8+z^7 a^7+5 z^5 a^7-11 z^3 a^7+6 z a^7+3 z^6 a^6-5 z^4 a^6+5 z^2 a^6-3 a^6+2 z^5 a^5-2 z^3 a^5+z^4 a^4-2 z^2 a^4+a^4 }[/math]
The A2 invariant [math]\displaystyle{ q^{32}+q^{30}-2 q^{28}-q^{26}-2 q^{24}-2 q^{22}+q^{20}+3 q^{16}+q^{14}+q^{12}+2 q^{10}-q^8+q^6 }[/math]
The G2 invariant [math]\displaystyle{ q^{162}-2 q^{160}+4 q^{158}-6 q^{156}+3 q^{154}-q^{152}-6 q^{150}+14 q^{148}-18 q^{146}+20 q^{144}-12 q^{142}-q^{140}+17 q^{138}-27 q^{136}+34 q^{134}-24 q^{132}+7 q^{130}+10 q^{128}-21 q^{126}+25 q^{124}-16 q^{122}+q^{120}+14 q^{118}-20 q^{116}+12 q^{114}-24 q^{110}+34 q^{108}-36 q^{106}+18 q^{104}-2 q^{102}-24 q^{100}+40 q^{98}-47 q^{96}+34 q^{94}-18 q^{92}-7 q^{90}+25 q^{88}-33 q^{86}+26 q^{84}-9 q^{82}-2 q^{80}+16 q^{78}-17 q^{76}+9 q^{74}+10 q^{72}-21 q^{70}+29 q^{68}-21 q^{66}+6 q^{64}+17 q^{62}-27 q^{60}+33 q^{58}-23 q^{56}+12 q^{54}+2 q^{52}-14 q^{50}+17 q^{48}-14 q^{46}+10 q^{44}-2 q^{42}-q^{40}+3 q^{38}-3 q^{36}+3 q^{34}-q^{32}+q^{30} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n65, ...}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {...}

Vassiliev invariants

V2 and V3: (4, -7)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -56 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{776}{3} }[/math] [math]\displaystyle{ \frac{112}{3} }[/math] [math]\displaystyle{ -896 }[/math] [math]\displaystyle{ -\frac{4016}{3} }[/math] [math]\displaystyle{ -\frac{704}{3} }[/math] [math]\displaystyle{ -152 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 1568 }[/math] [math]\displaystyle{ \frac{12416}{3} }[/math] [math]\displaystyle{ \frac{1792}{3} }[/math] [math]\displaystyle{ \frac{107222}{15} }[/math] [math]\displaystyle{ \frac{6512}{15} }[/math] [math]\displaystyle{ \frac{107648}{45} }[/math] [math]\displaystyle{ \frac{250}{9} }[/math] [math]\displaystyle{ \frac{4502}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of 8 15. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-3        11
-5       21-1
-7      3  3
-9     22  0
-11    43   1
-13   22    0
-15  24     -2
-17 12      1
-19 2       -2
-211        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials