9 38

From Knot Atlas
Revision as of 20:09, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

9 37.gif

9_37

9 39.gif

9_39

9 38.gif Visit 9 38's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 38's page at Knotilus!

Visit 9 38's page at the original Knot Atlas!

9 38 Quick Notes


9 38 Further Notes and Views

Knot presentations

Planar diagram presentation X1627 X5,14,6,15 X7,18,8,1 X15,8,16,9 X3,10,4,11 X9,4,10,5 X17,12,18,13 X11,16,12,17 X13,2,14,3
Gauss code -1, 9, -5, 6, -2, 1, -3, 4, -6, 5, -8, 7, -9, 2, -4, 8, -7, 3
Dowker-Thistlethwaite code 6 10 14 18 4 16 2 8 12
Conway Notation [.2.2.2]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif

Length is 11, width is 4.

Braid index is 4.

A Morse Link Presentation:

9 38 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 12.9329
A-Polynomial See Data:9 38/A-polynomial

[edit Notes for 9 38's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 38's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 57, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_63, ...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (6, -14)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 38. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        31-2
-7       4  4
-9      43  -1
-11     64   2
-13    44    0
-15   46     -2
-17  24      2
-19 14       -3
-21 2        2
-231         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials