L11n437

From Knot Atlas
Revision as of 12:09, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n436.gif

L11n436

L11n438.gif

L11n438

L11n437.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n437 at Knotilus!


Link Presentations

[edit Notes on L11n437's Link Presentations]

Planar diagram presentation X8192 X12,3,13,4 X13,20,14,21 X9,18,10,19 X21,10,22,11 X19,14,20,7 X5,17,6,16 X17,22,18,15 X2738 X4,11,5,12 X15,1,16,6
Gauss code {1, -9, 2, -10, -7, 11}, {9, -1, -4, 5, 10, -2, -3, 6}, {-11, 7, -8, 4, -6, 3, -5, 8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n437 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{10} z^6-5 a^{10} z^4+5 a^{10} z^2+a^9 z^7-5 a^9 z^5+5 a^9 z^3+a^8 z^8-7 a^8 z^6+16 a^8 z^4-17 a^8 z^2-a^8 z^{-2} +7 a^8+a^7 z^7-7 a^7 z^5+13 a^7 z^3-9 a^7 z+2 a^7 z^{-1} +a^6 z^8-8 a^6 z^6+21 a^6 z^4-25 a^6 z^2-2 a^6 z^{-2} +11 a^6+a^5 z^7-7 a^5 z^5+13 a^5 z^3-9 a^5 z+2 a^5 z^{-1} +a^4 z^6-5 a^4 z^4+3 a^4 z^2-a^4 z^{-2} +3 a^4+a^3 z^7-5 a^3 z^5+5 a^3 z^3+a^2 z^6-5 a^2 z^4+6 a^2 z^2-2 a^2} (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
1          11
-1           0
-3       121 0
-5      111  1
-7     241   1
-9    112    2
-11   131     1
-13  111      1
-15  11       0
-1711         0
-191          1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n436.gif

L11n436

L11n438.gif

L11n438