10 160
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 160's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X12,4,13,3 X7,14,8,15 X9,19,10,18 X19,7,20,6 X5,17,6,16 X17,11,18,10 X13,8,14,9 X15,1,16,20 X2,12,3,11 |
| Gauss code | 1, -10, 2, -1, -6, 5, -3, 8, -4, 7, 10, -2, -8, 3, -9, 6, -7, 4, -5, 9 |
| Dowker-Thistlethwaite code | 4 12 -16 -14 -18 2 -8 -20 -10 -6 |
| Conway Notation | [-30:20:20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{4, 10}, {3, 5}, {1, 4}, {7, 9}, {11, 8}, {10, 6}, {5, 7}, {6, 12}, {2, 11}, {12, 3}, {9, 2}, {8, 1}] |
[edit Notes on presentations of 10 160]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 160"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X12,4,13,3 X7,14,8,15 X9,19,10,18 X19,7,20,6 X5,17,6,16 X17,11,18,10 X13,8,14,9 X15,1,16,20 X2,12,3,11 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, -6, 5, -3, 8, -4, 7, 10, -2, -8, 3, -9, 6, -7, 4, -5, 9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 -16 -14 -18 2 -8 -20 -10 -6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[-30:20:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,1,2,1,1,-3,2,-1,2,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{4, 10}, {3, 5}, {1, 4}, {7, 9}, {11, 8}, {10, 6}, {5, 7}, {6, 12}, {2, 11}, {12, 3}, {9, 2}, {8, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+4 t^2-4 t+3-4 t^{-1} +4 t^{-2} - t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6-2 z^4+3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 21, 4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^7+3 q^6-3 q^5+4 q^4-3 q^3+3 q^2-2 q+1} |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-4} +z^4 a^{-2} -4 z^4 a^{-4} +z^4 a^{-6} +3 z^2 a^{-2} -3 z^2 a^{-4} +3 z^2 a^{-6} + a^{-2} + a^{-6} - a^{-8} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-4} +z^8 a^{-6} +2 z^7 a^{-3} +3 z^7 a^{-5} +z^7 a^{-7} +z^6 a^{-2} -2 z^6 a^{-4} -3 z^6 a^{-6} -8 z^5 a^{-3} -11 z^5 a^{-5} -3 z^5 a^{-7} -4 z^4 a^{-2} -3 z^4 a^{-4} +2 z^4 a^{-6} +z^4 a^{-8} +7 z^3 a^{-3} +10 z^3 a^{-5} +3 z^3 a^{-7} +4 z^2 a^{-2} +3 z^2 a^{-4} +z^2 a^{-8} -z a^{-3} -3 z a^{-5} +2 z a^{-9} - a^{-2} - a^{-6} - a^{-8} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+2 q^{-10} +2 q^{-14} - q^{-22} - q^{-26} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +3 q^{-6} -4 q^{-8} +3 q^{-10} -4 q^{-14} +10 q^{-16} -8 q^{-18} +7 q^{-20} - q^{-22} -6 q^{-24} +9 q^{-26} -8 q^{-28} + q^{-30} +5 q^{-32} -8 q^{-34} +6 q^{-36} -7 q^{-40} +13 q^{-42} -12 q^{-44} +5 q^{-46} +2 q^{-48} -7 q^{-50} +12 q^{-52} -8 q^{-54} +7 q^{-56} - q^{-58} +2 q^{-60} +4 q^{-62} -6 q^{-64} +5 q^{-66} -2 q^{-68} + q^{-70} +3 q^{-72} -5 q^{-74} +3 q^{-76} +3 q^{-78} -8 q^{-80} +10 q^{-82} -11 q^{-84} +3 q^{-86} +6 q^{-88} -13 q^{-90} +11 q^{-92} -6 q^{-94} +5 q^{-98} -7 q^{-100} + q^{-102} + q^{-104} -3 q^{-106} +3 q^{-108} -2 q^{-110} -2 q^{-112} +3 q^{-114} -4 q^{-116} +2 q^{-118} +2 q^{-120} -2 q^{-122} + q^{-124} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+2 q^{-10} +2 q^{-14} - q^{-22} - q^{-26} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-2 q^2+6-12 q^{-2} +17 q^{-4} -20 q^{-6} +24 q^{-8} -18 q^{-10} +11 q^{-12} +4 q^{-14} -14 q^{-16} +26 q^{-18} -34 q^{-20} +38 q^{-22} -32 q^{-24} +32 q^{-26} -21 q^{-28} +16 q^{-30} -4 q^{-32} -8 q^{-34} +13 q^{-36} -26 q^{-38} +24 q^{-40} -24 q^{-42} +18 q^{-44} -8 q^{-46} +6 q^{-50} -7 q^{-52} +2 q^{-54} -4 q^{-56} +4 q^{-60} -2 q^{-62} +2 q^{-64} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-1- q^{-2} + q^{-4} +2 q^{-6} +2 q^{-12} +2 q^{-14} - q^{-16} - q^{-18} + q^{-22} +2 q^{-24} +3 q^{-28} + q^{-30} +3 q^{-32} + q^{-34} - q^{-36} - q^{-38} - q^{-40} -2 q^{-42} -4 q^{-44} -2 q^{-46} - q^{-48} +2 q^{-50} - q^{-52} - q^{-54} + q^{-56} + q^{-58} + q^{-60} - q^{-62} + q^{-66} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1- q^{-2} + q^{-4} + q^{-6} - q^{-8} +2 q^{-10} + q^{-14} +2 q^{-16} + q^{-20} + q^{-22} + q^{-24} +2 q^{-28} +2 q^{-32} - q^{-34} - q^{-36} - q^{-38} -4 q^{-40} - q^{-42} - q^{-44} - q^{-46} + q^{-48} +2 q^{-50} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-1} + q^{-5} - q^{-7} + q^{-9} + q^{-13} + q^{-15} + q^{-17} + q^{-19} + q^{-23} - q^{-25} + q^{-27} - q^{-29} - q^{-33} - q^{-35} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} + q^{-8} + q^{-12} + q^{-14} + q^{-18} +3 q^{-20} + q^{-22} +3 q^{-26} +3 q^{-28} + q^{-30} -2 q^{-32} +4 q^{-34} +2 q^{-36} -2 q^{-38} + q^{-40} +3 q^{-42} -3 q^{-44} - q^{-46} + q^{-48} -3 q^{-50} -4 q^{-52} - q^{-54} -4 q^{-58} -2 q^{-60} +2 q^{-62} + q^{-64} -2 q^{-66} +2 q^{-68} +2 q^{-70} } |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1- q^{-2} +3 q^{-4} -3 q^{-6} +3 q^{-8} -2 q^{-10} +2 q^{-12} - q^{-14} +2 q^{-18} -3 q^{-20} +5 q^{-22} -5 q^{-24} +6 q^{-26} -4 q^{-28} +4 q^{-30} -2 q^{-32} + q^{-34} + q^{-36} - q^{-38} +2 q^{-40} -3 q^{-42} +3 q^{-44} -3 q^{-46} + q^{-48} -2 q^{-50} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^2- q^{-2} - q^{-4} +2 q^{-6} +2 q^{-8} -2 q^{-10} -2 q^{-12} +2 q^{-14} +3 q^{-16} -3 q^{-20} +4 q^{-24} +2 q^{-26} -2 q^{-28} - q^{-30} + q^{-32} +2 q^{-34} - q^{-38} +3 q^{-42} + q^{-44} - q^{-46} - q^{-48} +2 q^{-50} +3 q^{-52} - q^{-54} -4 q^{-56} +2 q^{-60} - q^{-62} -4 q^{-64} -2 q^{-66} + q^{-68} + q^{-70} -2 q^{-72} -2 q^{-74} + q^{-76} + q^{-78} +2 q^{-80} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +2 q^{-6} -2 q^{-8} +4 q^{-10} -2 q^{-12} +2 q^{-14} - q^{-16} +3 q^{-18} +2 q^{-24} - q^{-26} +4 q^{-28} -2 q^{-30} +4 q^{-32} -4 q^{-34} +5 q^{-36} -3 q^{-38} +4 q^{-40} -2 q^{-42} +3 q^{-44} - q^{-46} + q^{-48} -3 q^{-52} -4 q^{-56} -4 q^{-60} +2 q^{-62} -2 q^{-64} + q^{-66} +2 q^{-70} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +3 q^{-6} -4 q^{-8} +3 q^{-10} -4 q^{-14} +10 q^{-16} -8 q^{-18} +7 q^{-20} - q^{-22} -6 q^{-24} +9 q^{-26} -8 q^{-28} + q^{-30} +5 q^{-32} -8 q^{-34} +6 q^{-36} -7 q^{-40} +13 q^{-42} -12 q^{-44} +5 q^{-46} +2 q^{-48} -7 q^{-50} +12 q^{-52} -8 q^{-54} +7 q^{-56} - q^{-58} +2 q^{-60} +4 q^{-62} -6 q^{-64} +5 q^{-66} -2 q^{-68} + q^{-70} +3 q^{-72} -5 q^{-74} +3 q^{-76} +3 q^{-78} -8 q^{-80} +10 q^{-82} -11 q^{-84} +3 q^{-86} +6 q^{-88} -13 q^{-90} +11 q^{-92} -6 q^{-94} +5 q^{-98} -7 q^{-100} + q^{-102} + q^{-104} -3 q^{-106} +3 q^{-108} -2 q^{-110} -2 q^{-112} +3 q^{-114} -4 q^{-116} +2 q^{-118} +2 q^{-120} -2 q^{-122} + q^{-124} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 160"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+4 t^2-4 t+3-4 t^{-1} +4 t^{-2} - t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6-2 z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 21, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^7+3 q^6-3 q^5+4 q^4-3 q^3+3 q^2-2 q+1} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-4} +z^4 a^{-2} -4 z^4 a^{-4} +z^4 a^{-6} +3 z^2 a^{-2} -3 z^2 a^{-4} +3 z^2 a^{-6} + a^{-2} + a^{-6} - a^{-8} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-4} +z^8 a^{-6} +2 z^7 a^{-3} +3 z^7 a^{-5} +z^7 a^{-7} +z^6 a^{-2} -2 z^6 a^{-4} -3 z^6 a^{-6} -8 z^5 a^{-3} -11 z^5 a^{-5} -3 z^5 a^{-7} -4 z^4 a^{-2} -3 z^4 a^{-4} +2 z^4 a^{-6} +z^4 a^{-8} +7 z^3 a^{-3} +10 z^3 a^{-5} +3 z^3 a^{-7} +4 z^2 a^{-2} +3 z^2 a^{-4} +z^2 a^{-8} -z a^{-3} -3 z a^{-5} +2 z a^{-9} - a^{-2} - a^{-6} - a^{-8} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n118,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 160"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^7+3 q^6-3 q^5+4 q^4-3 q^3+3 q^2-2 q+1} } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n118,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (3, 6) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 10 160. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{21}-2 q^{19}+4 q^{17}-4 q^{16}-4 q^{15}+8 q^{14}-2 q^{13}-7 q^{12}+7 q^{11}+3 q^{10}-9 q^9+4 q^8+7 q^7-9 q^6+9 q^4-6 q^3-3 q^2+6 q-1-2 q^{-1} + q^{-2} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^{40}+4 q^{38}+7 q^{37}-11 q^{36}-11 q^{35}+8 q^{34}+25 q^{33}-7 q^{32}-34 q^{31}+2 q^{30}+40 q^{29}+5 q^{28}-44 q^{27}-9 q^{26}+40 q^{25}+14 q^{24}-40 q^{23}-12 q^{22}+32 q^{21}+15 q^{20}-29 q^{19}-12 q^{18}+19 q^{17}+16 q^{16}-14 q^{15}-13 q^{14}+4 q^{13}+13 q^{12}+2 q^{11}-7 q^{10}-10 q^9+3 q^8+11 q^7+6 q^6-11 q^5-9 q^4+6 q^3+11 q^2-q-9-2 q^{-1} +5 q^{-2} +2 q^{-3} - q^{-4} -2 q^{-5} + q^{-6} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}+2 q^{64}-4 q^{63}-8 q^{62}+7 q^{60}+27 q^{59}+2 q^{58}-38 q^{57}-35 q^{56}-2 q^{55}+82 q^{54}+54 q^{53}-53 q^{52}-101 q^{51}-58 q^{50}+120 q^{49}+131 q^{48}-24 q^{47}-142 q^{46}-124 q^{45}+107 q^{44}+173 q^{43}+17 q^{42}-138 q^{41}-154 q^{40}+79 q^{39}+173 q^{38}+33 q^{37}-114 q^{36}-150 q^{35}+53 q^{34}+157 q^{33}+40 q^{32}-86 q^{31}-139 q^{30}+22 q^{29}+136 q^{28}+52 q^{27}-47 q^{26}-125 q^{25}-21 q^{24}+99 q^{23}+63 q^{22}+4 q^{21}-90 q^{20}-57 q^{19}+43 q^{18}+47 q^{17}+45 q^{16}-31 q^{15}-55 q^{14}-2 q^{13}+q^{12}+41 q^{11}+16 q^{10}-16 q^9-3 q^8-33 q^7+5 q^6+15 q^5+9 q^4+21 q^3-21 q^2-12 q-7+ q^{-1} +22 q^{-2} - q^{-3} -2 q^{-4} -7 q^{-5} -6 q^{-6} +6 q^{-7} + q^{-8} +2 q^{-9} - q^{-10} -2 q^{-11} + q^{-12} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




