8 7

From Knot Atlas
Revision as of 17:44, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

8 6.gif

8_6

8 8.gif

8_8

8 7.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 7 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X11,1,12,16 X5,13,6,12 X7,15,8,14 X13,7,14,6 X15,9,16,8 X9,2,10,3
Gauss code -1, 8, -2, 1, -4, 6, -5, 7, -8, 2, -3, 4, -6, 5, -7, 3
Dowker-Thistlethwaite code 4 10 12 14 2 16 6 8
Conway Notation [4112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 8, width is 3,

Braid index is 3

8 7 ML.gif 8 7 AP.gif
[{10, 6}, {1, 8}, {7, 9}, {8, 10}, {9, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 7}]

[edit Notes on presentations of 8 7]

Knot 8_7.
A graph, knot 8_7.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-2][-8]
Hyperbolic Volume 7.0222
A-Polynomial See Data:8 7/A-polynomial

[edit Notes for 8 7's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 8 7's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 23, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n24,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 8 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
13        1-1
11       1 1
9      21 -1
7     21  1
5    22   0
3   22    0
1  13     2
-1 11      0
-3 1       1
-51        -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials