K11a146

From Knot Atlas
Revision as of 16:13, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a145.gif

K11a145

K11a147.gif

K11a147

K11a146.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a146 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X16,5,17,6 X18,7,19,8 X14,10,15,9 X2,11,3,12 X20,14,21,13 X22,15,1,16 X6,17,7,18 X12,20,13,19 X8,21,9,22
Gauss code 1, -6, 2, -1, 3, -9, 4, -11, 5, -2, 6, -10, 7, -5, 8, -3, 9, -4, 10, -7, 11, -8
Dowker-Thistlethwaite code 4 10 16 18 14 2 20 22 6 12 8
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a146 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for K11a146's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 123, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {K11a294,}

Vassiliev invariants

V2 and V3: (3, -5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of K11a146. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
7           11
5          3 -3
3         51 4
1        83  -5
-1       105   5
-3      109    -1
-5     109     1
-7    710      3
-9   510       -5
-11  27        5
-13 15         -4
-15 2          2
-171           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a145.gif

K11a145

K11a147.gif

K11a147