K11a146
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X16,5,17,6 X18,7,19,8 X14,10,15,9 X2,11,3,12 X20,14,21,13 X22,15,1,16 X6,17,7,18 X12,20,13,19 X8,21,9,22 |
| Gauss code | 1, -6, 2, -1, 3, -9, 4, -11, 5, -2, 6, -10, 7, -5, 8, -3, 9, -4, 10, -7, 11, -8 |
| Dowker-Thistlethwaite code | 4 10 16 18 14 2 20 22 6 12 8 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-15 t^2+25 t-29+25 t^{-1} -15 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6+z^4+3 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 123, -2 } |
| Jones polynomial | [math]\displaystyle{ q^3-4 q^2+8 q-13+18 q^{-1} -19 q^{-2} +20 q^{-3} -17 q^{-4} +12 q^{-5} -7 q^{-6} +3 q^{-7} - q^{-8} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^8+2 a^4 z^6-5 a^2 z^6+z^6-a^6 z^4+8 a^4 z^4-9 a^2 z^4+3 z^4-3 a^6 z^2+10 a^4 z^2-6 a^2 z^2+2 z^2-2 a^6+3 a^4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 a^4 z^{10}+2 a^2 z^{10}+5 a^5 z^9+11 a^3 z^9+6 a z^9+6 a^6 z^8+8 a^4 z^8+9 a^2 z^8+7 z^8+5 a^7 z^7-4 a^5 z^7-24 a^3 z^7-11 a z^7+4 z^7 a^{-1} +3 a^8 z^6-8 a^6 z^6-26 a^4 z^6-35 a^2 z^6+z^6 a^{-2} -19 z^6+a^9 z^5-7 a^7 z^5-a^5 z^5+18 a^3 z^5+a z^5-10 z^5 a^{-1} -5 a^8 z^4+6 a^6 z^4+31 a^4 z^4+37 a^2 z^4-2 z^4 a^{-2} +15 z^4-2 a^9 z^3+3 a^7 z^3+4 a^5 z^3-3 a^3 z^3+3 a z^3+5 z^3 a^{-1} +2 a^8 z^2-5 a^6 z^2-16 a^4 z^2-14 a^2 z^2-5 z^2+a^9 z-a^7 z-2 a^5 z+2 a^6+3 a^4 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{24}-2 q^{18}+3 q^{16}-3 q^{14}+q^{12}+2 q^{10}-q^8+6 q^6-3 q^4+3 q^2-1-2 q^{-2} +2 q^{-4} -2 q^{-6} + q^{-8} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{128}-2 q^{126}+5 q^{124}-8 q^{122}+9 q^{120}-8 q^{118}+q^{116}+13 q^{114}-29 q^{112}+47 q^{110}-58 q^{108}+51 q^{106}-27 q^{104}-22 q^{102}+82 q^{100}-138 q^{98}+174 q^{96}-174 q^{94}+120 q^{92}-12 q^{90}-135 q^{88}+288 q^{86}-385 q^{84}+378 q^{82}-253 q^{80}+10 q^{78}+262 q^{76}-476 q^{74}+541 q^{72}-397 q^{70}+105 q^{68}+222 q^{66}-443 q^{64}+447 q^{62}-240 q^{60}-93 q^{58}+389 q^{56}-504 q^{54}+369 q^{52}-22 q^{50}-379 q^{48}+680 q^{46}-732 q^{44}+507 q^{42}-92 q^{40}-371 q^{38}+716 q^{36}-819 q^{34}+660 q^{32}-282 q^{30}-157 q^{28}+513 q^{26}-649 q^{24}+524 q^{22}-206 q^{20}-166 q^{18}+428 q^{16}-470 q^{14}+276 q^{12}+73 q^{10}-400 q^8+570 q^6-493 q^4+193 q^2+180-489 q^{-2} +609 q^{-4} -510 q^{-6} +255 q^{-8} +49 q^{-10} -289 q^{-12} +393 q^{-14} -355 q^{-16} +223 q^{-18} -65 q^{-20} -62 q^{-22} +125 q^{-24} -135 q^{-26} +103 q^{-28} -54 q^{-30} +17 q^{-32} +11 q^{-34} -20 q^{-36} +18 q^{-38} -14 q^{-40} +7 q^{-42} -3 q^{-44} + q^{-46} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a146"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-15 t^2+25 t-29+25 t^{-1} -15 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6+z^4+3 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 123, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^3-4 q^2+8 q-13+18 q^{-1} -19 q^{-2} +20 q^{-3} -17 q^{-4} +12 q^{-5} -7 q^{-6} +3 q^{-7} - q^{-8} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^8+2 a^4 z^6-5 a^2 z^6+z^6-a^6 z^4+8 a^4 z^4-9 a^2 z^4+3 z^4-3 a^6 z^2+10 a^4 z^2-6 a^2 z^2+2 z^2-2 a^6+3 a^4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 a^4 z^{10}+2 a^2 z^{10}+5 a^5 z^9+11 a^3 z^9+6 a z^9+6 a^6 z^8+8 a^4 z^8+9 a^2 z^8+7 z^8+5 a^7 z^7-4 a^5 z^7-24 a^3 z^7-11 a z^7+4 z^7 a^{-1} +3 a^8 z^6-8 a^6 z^6-26 a^4 z^6-35 a^2 z^6+z^6 a^{-2} -19 z^6+a^9 z^5-7 a^7 z^5-a^5 z^5+18 a^3 z^5+a z^5-10 z^5 a^{-1} -5 a^8 z^4+6 a^6 z^4+31 a^4 z^4+37 a^2 z^4-2 z^4 a^{-2} +15 z^4-2 a^9 z^3+3 a^7 z^3+4 a^5 z^3-3 a^3 z^3+3 a z^3+5 z^3 a^{-1} +2 a^8 z^2-5 a^6 z^2-16 a^4 z^2-14 a^2 z^2-5 z^2+a^9 z-a^7 z-2 a^5 z+2 a^6+3 a^4 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a294,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a146"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+6 t^3-15 t^2+25 t-29+25 t^{-1} -15 t^{-2} +6 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ q^3-4 q^2+8 q-13+18 q^{-1} -19 q^{-2} +20 q^{-3} -17 q^{-4} +12 q^{-5} -7 q^{-6} +3 q^{-7} - q^{-8} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a294,} |
Vassiliev invariants
| V2 and V3: | (3, -5) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11a146. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



