K11a264

From Knot Atlas
Revision as of 16:25, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a263.gif

K11a263

K11a265.gif

K11a265

K11a264.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a264 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X8394 X16,6,17,5 X14,7,15,8 X4,9,5,10 X18,12,19,11 X20,14,21,13 X2,16,3,15 X22,17,1,18 X12,20,13,19 X10,22,11,21
Gauss code 1, -8, 2, -5, 3, -1, 4, -2, 5, -11, 6, -10, 7, -4, 8, -3, 9, -6, 10, -7, 11, -9
Dowker-Thistlethwaite code 6 8 16 14 4 18 20 2 22 12 10
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a264 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11a264's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 135, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11a264/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a157, K11a305,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a264. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         61 -5
11        83  5
9       116   -5
7      118    3
5     1011     1
3    911      -2
1   511       6
-1  38        -5
-3 15         4
-5 3          -3
-71           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a263.gif

K11a263

K11a265.gif

K11a265