K11a274

From Knot Atlas
Revision as of 16:28, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a273.gif

K11a273

K11a275.gif

K11a275

K11a274.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a274 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X14,5,15,6 X18,7,19,8 X2,10,3,9 X20,11,21,12 X22,14,1,13 X4,15,5,16 X12,17,13,18 X8,19,9,20 X16,22,17,21
Gauss code 1, -5, 2, -8, 3, -1, 4, -10, 5, -2, 6, -9, 7, -3, 8, -11, 9, -4, 10, -6, 11, -7
Dowker-Thistlethwaite code 6 10 14 18 2 20 22 4 12 8 16
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a274 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a274/ThurstonBennequinNumber
Hyperbolic Volume 18.6505
A-Polynomial See Data:K11a274/A-polynomial

[edit Notes for K11a274's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a274's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 165, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11a274/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a274. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          3 3
7         71 -6
5        113  8
3       127   -5
1      1511    4
-1     1313     0
-3    1014      -4
-5   713       6
-7  310        -7
-9 17         6
-11 3          -3
-131           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a273.gif

K11a273

K11a275.gif

K11a275