K11a275

From Knot Atlas
Jump to navigationJump to search

K11a274.gif

K11a274

K11a276.gif

K11a276

K11a275.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a275 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X14,6,15,5 X20,8,21,7 X2,10,3,9 X18,12,19,11 X4,14,5,13 X22,15,1,16 X12,18,13,17 X8,20,9,19 X16,21,17,22
Gauss code 1, -5, 2, -7, 3, -1, 4, -10, 5, -2, 6, -9, 7, -3, 8, -11, 9, -6, 10, -4, 11, -8
Dowker-Thistlethwaite code 6 10 14 20 2 18 4 22 12 8 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a275 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11a275's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -3 t^3+15 t^2-29 t+35-29 t^{-1} +15 t^{-2} -3 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -3 z^6-3 z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 129, 4 }
Jones polynomial [math]\displaystyle{ -q^{11}+3 q^{10}-8 q^9+14 q^8-18 q^7+21 q^6-21 q^5+18 q^4-13 q^3+8 q^2-3 q+1 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-4} -2 z^6 a^{-6} +z^4 a^{-2} -z^4 a^{-4} -6 z^4 a^{-6} +3 z^4 a^{-8} +2 z^2 a^{-2} +2 z^2 a^{-4} -6 z^2 a^{-6} +7 z^2 a^{-8} -z^2 a^{-10} + a^{-2} + a^{-4} -3 a^{-6} +4 a^{-8} -2 a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^{10} a^{-6} +2 z^{10} a^{-8} +5 z^9 a^{-5} +11 z^9 a^{-7} +6 z^9 a^{-9} +5 z^8 a^{-4} +8 z^8 a^{-6} +11 z^8 a^{-8} +8 z^8 a^{-10} +3 z^7 a^{-3} -7 z^7 a^{-5} -20 z^7 a^{-7} -4 z^7 a^{-9} +6 z^7 a^{-11} +z^6 a^{-2} -10 z^6 a^{-4} -26 z^6 a^{-6} -32 z^6 a^{-8} -14 z^6 a^{-10} +3 z^6 a^{-12} -7 z^5 a^{-3} +z^5 a^{-5} +13 z^5 a^{-7} -5 z^5 a^{-9} -9 z^5 a^{-11} +z^5 a^{-13} -3 z^4 a^{-2} +5 z^4 a^{-4} +25 z^4 a^{-6} +36 z^4 a^{-8} +15 z^4 a^{-10} -4 z^4 a^{-12} +4 z^3 a^{-3} -2 z^3 a^{-5} -6 z^3 a^{-7} +8 z^3 a^{-9} +6 z^3 a^{-11} -2 z^3 a^{-13} +3 z^2 a^{-2} -2 z^2 a^{-4} -14 z^2 a^{-6} -20 z^2 a^{-8} -10 z^2 a^{-10} +z^2 a^{-12} +z a^{-5} +2 z a^{-7} -2 z a^{-9} -2 z a^{-11} +z a^{-13} - a^{-2} + a^{-4} +3 a^{-6} +4 a^{-8} +2 a^{-10} }[/math]
The A2 invariant Data:K11a275/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a275/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a344,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (4, 11)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 88 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{1544}{3} }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 1408 }[/math] [math]\displaystyle{ \frac{9712}{3} }[/math] [math]\displaystyle{ \frac{1600}{3} }[/math] [math]\displaystyle{ 536 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 3872 }[/math] [math]\displaystyle{ \frac{24704}{3} }[/math] [math]\displaystyle{ \frac{4096}{3} }[/math] [math]\displaystyle{ \frac{311702}{15} }[/math] [math]\displaystyle{ -\frac{6608}{15} }[/math] [math]\displaystyle{ \frac{419408}{45} }[/math] [math]\displaystyle{ \frac{2986}{9} }[/math] [math]\displaystyle{ \frac{18662}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a275. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          2 2
19         61 -5
17        82  6
15       106   -4
13      118    3
11     1010     0
9    811      -3
7   510       5
5  38        -5
3 16         5
1 2          -2
-11           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a274.gif

K11a274

K11a276.gif

K11a276