10 98
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 98's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1627 X3,10,4,11 X7,18,8,19 X17,8,18,9 X9,2,10,3 X11,16,12,17 X5,15,6,14 X15,5,16,4 X13,20,14,1 X19,12,20,13 |
| Gauss code | -1, 5, -2, 8, -7, 1, -3, 4, -5, 2, -6, 10, -9, 7, -8, 6, -4, 3, -10, 9 |
| Dowker-Thistlethwaite code | 6 10 14 18 2 16 20 4 8 12 |
| Conway Notation | [.2.2.2.20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{13, 2}, {1, 9}, {8, 3}, {2, 7}, {6, 8}, {7, 10}, {9, 11}, {10, 4}, {12, 6}, {11, 13}, {3, 5}, {4, 12}, {5, 1}] |
[edit Notes on presentations of 10 98]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 98"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3,10,4,11 X7,18,8,19 X17,8,18,9 X9,2,10,3 X11,16,12,17 X5,15,6,14 X15,5,16,4 X13,20,14,1 X19,12,20,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 5, -2, 8, -7, 1, -3, 4, -5, 2, -6, 10, -9, 7, -8, 6, -4, 3, -10, 9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 18 2 16 20 4 8 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.2.2.2.20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{-1,-1,-2,-2,3,-2,1,-2,-2,3,-2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{13, 2}, {1, 9}, {8, 3}, {2, 7}, {6, 8}, {7, 10}, {9, 11}, {10, 4}, {12, 6}, {11, 13}, {3, 5}, {4, 12}, {5, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{58}-2 q^{56}+q^{54}+5 q^{52}-11 q^{50}+2 q^{48}+19 q^{46}-24 q^{44}-7 q^{42}+34 q^{40}-20 q^{38}-16 q^{36}+31 q^{34}-20 q^{30}+6 q^{28}+16 q^{26}-14 q^{24}-20 q^{22}+24 q^{20}+4 q^{18}-32 q^{16}+21 q^{14}+20 q^{12}-29 q^{10}+4 q^8+21 q^6-13 q^4-5 q^2+9- q^{-2} -2 q^{-4} + q^{-6} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{111}-2 q^{109}+q^{107}+2 q^{105}-2 q^{103}-5 q^{101}+5 q^{99}+13 q^{97}-15 q^{95}-30 q^{93}+27 q^{91}+60 q^{89}-27 q^{87}-110 q^{85}+13 q^{83}+166 q^{81}+23 q^{79}-198 q^{77}-87 q^{75}+213 q^{73}+145 q^{71}-179 q^{69}-197 q^{67}+115 q^{65}+206 q^{63}-39 q^{61}-194 q^{59}-40 q^{57}+164 q^{55}+103 q^{53}-111 q^{51}-152 q^{49}+75 q^{47}+186 q^{45}-16 q^{43}-218 q^{41}-28 q^{39}+217 q^{37}+84 q^{35}-213 q^{33}-146 q^{31}+174 q^{29}+189 q^{27}-111 q^{25}-212 q^{23}+41 q^{21}+199 q^{19}+31 q^{17}-155 q^{15}-71 q^{13}+94 q^{11}+86 q^9-42 q^7-66 q^5+4 q^3+42 q+10 q^{-1} -19 q^{-3} -8 q^{-5} +6 q^{-7} +4 q^{-9} - q^{-11} -2 q^{-13} + q^{-15} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{180}-2 q^{178}+q^{176}+2 q^{174}-5 q^{172}+4 q^{170}-2 q^{168}+5 q^{166}+2 q^{164}-27 q^{162}+10 q^{160}+16 q^{158}+42 q^{156}+6 q^{154}-128 q^{152}-54 q^{150}+70 q^{148}+250 q^{146}+141 q^{144}-353 q^{142}-426 q^{140}-73 q^{138}+675 q^{136}+776 q^{134}-314 q^{132}-1120 q^{130}-884 q^{128}+743 q^{126}+1767 q^{124}+546 q^{122}-1303 q^{120}-2018 q^{118}-161 q^{116}+2024 q^{114}+1719 q^{112}-374 q^{110}-2249 q^{108}-1343 q^{106}+1040 q^{104}+1980 q^{102}+854 q^{100}-1289 q^{98}-1704 q^{96}-275 q^{94}+1237 q^{92}+1411 q^{90}-77 q^{88}-1307 q^{86}-1085 q^{84}+381 q^{82}+1433 q^{80}+736 q^{78}-864 q^{76}-1504 q^{74}-192 q^{72}+1394 q^{70}+1357 q^{68}-486 q^{66}-1871 q^{64}-819 q^{62}+1198 q^{60}+1976 q^{58}+222 q^{56}-1893 q^{54}-1621 q^{52}+376 q^{50}+2145 q^{48}+1267 q^{46}-1044 q^{44}-1950 q^{42}-877 q^{40}+1316 q^{38}+1772 q^{36}+314 q^{34}-1199 q^{32}-1498 q^{30}-13 q^{28}+1127 q^{26}+986 q^{24}-8 q^{22}-967 q^{20}-634 q^{18}+119 q^{16}+606 q^{14}+465 q^{12}-173 q^{10}-361 q^8-235 q^6+74 q^4+245 q^2+83-35 q^{-2} -108 q^{-4} -49 q^{-6} +40 q^{-8} +28 q^{-10} +18 q^{-12} -13 q^{-14} -14 q^{-16} +3 q^{-18} + q^{-20} +4 q^{-22} - q^{-24} -2 q^{-26} + q^{-28} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{30}-q^{28}+2 q^{26}+2 q^{24}-3 q^{22}-5 q^{18}-q^{16}+q^{14}+5 q^{10}-q^8+2 q^6+q^4-q^2+1} |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{84}-4 q^{82}+10 q^{80}-20 q^{78}+40 q^{76}-72 q^{74}+114 q^{72}-174 q^{70}+266 q^{68}-376 q^{66}+494 q^{64}-632 q^{62}+766 q^{60}-860 q^{58}+866 q^{56}-786 q^{54}+593 q^{52}-272 q^{50}-140 q^{48}+616 q^{46}-1070 q^{44}+1472 q^{42}-1744 q^{40}+1876 q^{38}-1845 q^{36}+1644 q^{34}-1308 q^{32}+856 q^{30}-396 q^{28}-82 q^{26}+494 q^{24}-800 q^{22}+968 q^{20}-996 q^{18}+934 q^{16}-780 q^{14}+598 q^{12}-416 q^{10}+268 q^8-150 q^6+80 q^4-36 q^2+14-4 q^{-2} + q^{-4} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{76}-q^{74}+q^{72}+2 q^{70}-q^{68}-4 q^{66}+2 q^{64}+7 q^{62}-6 q^{60}-13 q^{58}+q^{56}+8 q^{54}-11 q^{52}-5 q^{50}+19 q^{48}+18 q^{46}-2 q^{44}+10 q^{40}-8 q^{38}-15 q^{36}-q^{34}-6 q^{32}-14 q^{30}+3 q^{28}+10 q^{26}-6 q^{24}-6 q^{22}+14 q^{20}+9 q^{18}-10 q^{16}-4 q^{14}+13 q^{12}+3 q^{10}-7 q^8-q^6+5 q^4+3 q^2-2- q^{-2} + q^{-4} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-2 q^{66}+6 q^{62}-7 q^{60}-4 q^{58}+17 q^{56}-13 q^{54}-13 q^{52}+24 q^{50}-14 q^{48}-14 q^{46}+27 q^{44}-5 q^{40}+16 q^{38}+4 q^{36}-8 q^{34}-17 q^{32}-q^{28}-26 q^{26}+10 q^{24}+19 q^{22}-19 q^{20}+11 q^{18}+18 q^{16}-17 q^{14}+8 q^{12}+8 q^{10}-8 q^8+4 q^6+2 q^4-2 q^2+1} |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{39}-q^{37}+3 q^{35}+3 q^{31}-3 q^{29}-6 q^{25}-3 q^{23}-2 q^{21}+3 q^{17}+q^{15}+5 q^{13}-q^{11}+3 q^9-q^7+2 q^5-q^3+q} |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-q^{46}+3 q^{44}+q^{42}+q^{40}+3 q^{38}-3 q^{36}-6 q^{32}-4 q^{30}-4 q^{28}-2 q^{26}+2 q^{22}+4 q^{20}+q^{18}+5 q^{16}-q^{14}+3 q^{12}+2 q^6-q^4+q^2} |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-2 q^{66}+4 q^{64}-8 q^{62}+13 q^{60}-18 q^{58}+25 q^{56}-29 q^{54}+31 q^{52}-28 q^{50}+22 q^{48}-12 q^{46}-q^{44}+16 q^{42}-33 q^{40}+44 q^{38}-56 q^{36}+58 q^{34}-59 q^{32}+50 q^{30}-39 q^{28}+24 q^{26}-8 q^{24}-5 q^{22}+19 q^{20}-25 q^{18}+32 q^{16}-29 q^{14}+28 q^{12}-22 q^{10}+16 q^8-10 q^6+6 q^4-2 q^2+1} |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{110}-2 q^{106}-2 q^{104}+2 q^{102}+7 q^{100}+2 q^{98}-10 q^{96}-11 q^{94}+5 q^{92}+21 q^{90}+6 q^{88}-23 q^{86}-22 q^{84}+12 q^{82}+30 q^{80}+q^{78}-31 q^{76}-15 q^{74}+24 q^{72}+25 q^{70}-10 q^{68}-22 q^{66}+8 q^{64}+27 q^{62}+6 q^{60}-22 q^{58}-8 q^{56}+16 q^{54}+8 q^{52}-21 q^{50}-19 q^{48}+10 q^{46}+16 q^{44}-13 q^{42}-29 q^{40}+2 q^{38}+32 q^{36}+15 q^{34}-25 q^{32}-24 q^{30}+16 q^{28}+34 q^{26}+2 q^{24}-25 q^{22}-13 q^{20}+17 q^{18}+17 q^{16}-4 q^{14}-12 q^{12}-2 q^{10}+7 q^8+4 q^6-2 q^4-2 q^2+ q^{-2} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{94}-2 q^{92}+2 q^{90}-3 q^{88}+7 q^{86}-10 q^{84}+10 q^{82}-13 q^{80}+21 q^{78}-23 q^{76}+19 q^{74}-25 q^{72}+24 q^{70}-21 q^{68}+12 q^{66}-11 q^{64}+6 q^{62}+14 q^{60}-9 q^{58}+28 q^{56}-26 q^{54}+44 q^{52}-41 q^{50}+41 q^{48}-55 q^{46}+34 q^{44}-47 q^{42}+24 q^{40}-34 q^{38}+13 q^{36}-6 q^{34}+3 q^{32}+11 q^{30}-10 q^{28}+26 q^{26}-19 q^{24}+26 q^{22}-23 q^{20}+25 q^{18}-18 q^{16}+17 q^{14}-12 q^{12}+10 q^{10}-5 q^8+4 q^6-2 q^4+q^2} |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{162}-2 q^{160}+4 q^{158}-6 q^{156}+6 q^{154}-5 q^{152}+10 q^{148}-21 q^{146}+31 q^{144}-39 q^{142}+33 q^{140}-18 q^{138}-12 q^{136}+58 q^{134}-94 q^{132}+117 q^{130}-107 q^{128}+56 q^{126}+17 q^{124}-112 q^{122}+185 q^{120}-203 q^{118}+154 q^{116}-41 q^{114}-84 q^{112}+183 q^{110}-192 q^{108}+134 q^{106}-19 q^{104}-110 q^{102}+175 q^{100}-143 q^{98}+34 q^{96}+116 q^{94}-230 q^{92}+256 q^{90}-161 q^{88}-7 q^{86}+163 q^{84}-297 q^{82}+322 q^{80}-242 q^{78}+78 q^{76}+92 q^{74}-232 q^{72}+288 q^{70}-230 q^{68}+90 q^{66}+43 q^{64}-158 q^{62}+191 q^{60}-129 q^{58}+8 q^{56}+128 q^{54}-194 q^{52}+181 q^{50}-68 q^{48}-83 q^{46}+204 q^{44}-244 q^{42}+197 q^{40}-81 q^{38}-51 q^{36}+157 q^{34}-188 q^{32}+162 q^{30}-84 q^{28}+3 q^{26}+51 q^{24}-78 q^{22}+69 q^{20}-44 q^{18}+20 q^{16}+2 q^{14}-11 q^{12}+13 q^{10}-10 q^8+6 q^6-2 q^4+q^2} |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 98"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 81, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_87, K11a58, K11a165, K11n72,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 98"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+9 t^2-18 t+23-18 t^{-1} +9 t^{-2} -2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-3 q^{-1} +7 q^{-2} -9 q^{-3} +13 q^{-4} -14 q^{-5} +12 q^{-6} -11 q^{-7} +7 q^{-8} -3 q^{-9} + q^{-10} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_87, K11a58, K11a165, K11n72,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -4 is the signature of 10 98. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^2-3 q+1+11 q^{-1} -17 q^{-2} -7 q^{-3} +45 q^{-4} -34 q^{-5} -40 q^{-6} +94 q^{-7} -33 q^{-8} -93 q^{-9} +130 q^{-10} -13 q^{-11} -137 q^{-12} +136 q^{-13} +17 q^{-14} -147 q^{-15} +110 q^{-16} +37 q^{-17} -116 q^{-18} +63 q^{-19} +33 q^{-20} -62 q^{-21} +22 q^{-22} +16 q^{-23} -19 q^{-24} +5 q^{-25} +3 q^{-26} -3 q^{-27} + q^{-28} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-3 q^5+q^4+5 q^3+3 q^2-17 q-10+34 q^{-1} +35 q^{-2} -55 q^{-3} -80 q^{-4} +58 q^{-5} +163 q^{-6} -47 q^{-7} -245 q^{-8} -26 q^{-9} +349 q^{-10} +121 q^{-11} -403 q^{-12} -279 q^{-13} +450 q^{-14} +421 q^{-15} -418 q^{-16} -599 q^{-17} +383 q^{-18} +718 q^{-19} -285 q^{-20} -844 q^{-21} +193 q^{-22} +920 q^{-23} -83 q^{-24} -955 q^{-25} -34 q^{-26} +961 q^{-27} +131 q^{-28} -894 q^{-29} -238 q^{-30} +807 q^{-31} +286 q^{-32} -649 q^{-33} -329 q^{-34} +495 q^{-35} +304 q^{-36} -325 q^{-37} -261 q^{-38} +195 q^{-39} +193 q^{-40} -104 q^{-41} -118 q^{-42} +42 q^{-43} +70 q^{-44} -21 q^{-45} -31 q^{-46} +9 q^{-47} +13 q^{-48} -6 q^{-49} -3 q^{-50} + q^{-51} +3 q^{-52} -3 q^{-53} + q^{-54} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-3 q^{11}+q^{10}+5 q^9-3 q^8+3 q^7-20 q^6+2 q^5+36 q^4+7 q^3+15 q^2-109 q-57+109 q^{-1} +125 q^{-2} +177 q^{-3} -280 q^{-4} -366 q^{-5} -17 q^{-6} +313 q^{-7} +815 q^{-8} -139 q^{-9} -853 q^{-10} -770 q^{-11} -20 q^{-12} +1774 q^{-13} +855 q^{-14} -712 q^{-15} -1910 q^{-16} -1505 q^{-17} +2073 q^{-18} +2368 q^{-19} +746 q^{-20} -2366 q^{-21} -3698 q^{-22} +1000 q^{-23} +3274 q^{-24} +3057 q^{-25} -1488 q^{-26} -5467 q^{-27} -997 q^{-28} +3002 q^{-29} +5172 q^{-30} +266 q^{-31} -6245 q^{-32} -3014 q^{-33} +1950 q^{-34} +6557 q^{-35} +2109 q^{-36} -6208 q^{-37} -4600 q^{-38} +638 q^{-39} +7197 q^{-40} +3709 q^{-41} -5511 q^{-42} -5652 q^{-43} -828 q^{-44} +6975 q^{-45} +4939 q^{-46} -4023 q^{-47} -5826 q^{-48} -2340 q^{-49} +5546 q^{-50} +5354 q^{-51} -1880 q^{-52} -4700 q^{-53} -3280 q^{-54} +3163 q^{-55} +4448 q^{-56} -5 q^{-57} -2607 q^{-58} -2975 q^{-59} +978 q^{-60} +2591 q^{-61} +710 q^{-62} -758 q^{-63} -1754 q^{-64} -46 q^{-65} +964 q^{-66} +474 q^{-67} +48 q^{-68} -664 q^{-69} -147 q^{-70} +216 q^{-71} +121 q^{-72} +121 q^{-73} -170 q^{-74} -38 q^{-75} +36 q^{-76} -3 q^{-77} +47 q^{-78} -36 q^{-79} -2 q^{-80} +10 q^{-81} -9 q^{-82} +10 q^{-83} -7 q^{-84} + q^{-85} +3 q^{-86} -3 q^{-87} + q^{-88} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




