9 48
|
|
Visit 9 48's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 48's page at Knotilus! Visit 9 48's page at the original Knot Atlas! |
9 48 Quick Notes |
Knot presentations
Planar diagram presentation | X1425 X12,8,13,7 X3,11,4,10 X11,3,12,2 X14,6,15,5 X6,14,7,13 X15,18,16,1 X9,17,10,16 X17,9,18,8 |
Gauss code | -1, 4, -3, 1, 5, -6, 2, 9, -8, 3, -4, -2, 6, -5, -7, 8, -9, 7 |
Dowker-Thistlethwaite code | 4 10 -14 -12 16 2 -6 18 8 |
Conway Notation | [21,21,21-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-q^{10}-2 q^8+3 q^4+3 q^2-4- q^{-2} +4 q^{-4} + q^{-6} -4 q^{-8} -2 q^{-10} +2 q^{-12} - q^{-14} +2 q^{-18} +5 q^{-20} +2 q^{-22} +6 q^{-24} +4 q^{-26} - q^{-28} + q^{-30} +3 q^{-32} -2 q^{-34} -7 q^{-36} -4 q^{-38} - q^{-40} -4 q^{-42} -6 q^{-44} +4 q^{-48} +4 q^{-50} + q^{-52} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 48"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (3, 5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 48. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | χ | |||||||||
13 | 2 | -2 | ||||||||||||||||
11 | 1 | 1 | ||||||||||||||||
9 | 3 | 2 | -1 | |||||||||||||||
7 | 3 | 1 | 2 | |||||||||||||||
5 | 1 | 3 | 2 | |||||||||||||||
3 | 3 | 3 | 0 | |||||||||||||||
1 | 1 | 2 | 1 | |||||||||||||||
-1 | 2 | -2 | ||||||||||||||||
-3 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 48]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 48]] |
Out[3]= | PD[X[1, 4, 2, 5], X[12, 8, 13, 7], X[3, 11, 4, 10], X[11, 3, 12, 2],X[14, 6, 15, 5], X[6, 14, 7, 13], X[15, 18, 16, 1], X[9, 17, 10, 16],X[17, 9, 18, 8]] |
In[4]:= | GaussCode[Knot[9, 48]] |
Out[4]= | GaussCode[-1, 4, -3, 1, 5, -6, 2, 9, -8, 3, -4, -2, 6, -5, -7, 8, -9, 7] |
In[5]:= | BR[Knot[9, 48]] |
Out[5]= | BR[4, {1, 1, 2, -1, 2, 1, -3, 2, -1, 2, -3}] |
In[6]:= | alex = Alexander[Knot[9, 48]][t] |
Out[6]= | -2 7 2 |
In[7]:= | Conway[Knot[9, 48]][z] |
Out[7]= | 2 4 1 + 3 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 48], Knot[11, NonAlternating, 1]} |
In[9]:= | {KnotDet[Knot[9, 48]], KnotSignature[Knot[9, 48]]} |
Out[9]= | {27, 2} |
In[10]:= | J=Jones[Knot[9, 48]][q] |
Out[10]= | 1 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 48]} |
In[12]:= | A2Invariant[Knot[9, 48]][q] |
Out[12]= | -4 -2 2 4 6 8 10 12 16 18 |
In[13]:= | Kauffman[Knot[9, 48]][a, z] |
Out[13]= | 2 2 2 3 3 3 |
In[14]:= | {Vassiliev[2][Knot[9, 48]], Vassiliev[3][Knot[9, 48]]} |
Out[14]= | {0, 5} |
In[15]:= | Kh[Knot[9, 48]][q, t] |
Out[15]= | 3 1 2 q 3 5 5 2 7 2 |