10 41
|
|
|
|
Visit 10 41's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 41's page at Knotilus! Visit 10 41's page at the original Knot Atlas! |
10 41 Quick Notes |
Knot presentations
| Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X9,20,10,1 X15,19,16,18 X13,8,14,9 X17,6,18,7 X7,16,8,17 X19,15,20,14 |
| Gauss code | -1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8, 6, -10, 5 |
| Dowker-Thistlethwaite code | 4 10 12 16 20 2 8 18 6 14 |
| Conway Notation | [221212] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-7 t^2+17 t-21+17 t^{-1} -7 t^{-2} + t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-z^4-2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 71, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-3 q^2+6 q-8+11 q^{-1} -12 q^{-2} +11 q^{-3} -9 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6+a^6-2 z^4 a^4-4 z^2 a^4-2 a^4+z^6 a^2+3 z^4 a^2+4 z^2 a^2+2 a^2-2 z^4-4 z^2-1+z^2 a^{-2} + a^{-2} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3 z^9+a z^9+3 a^4 z^8+6 a^2 z^8+3 z^8+5 a^5 z^7+8 a^3 z^7+6 a z^7+3 z^7 a^{-1} +5 a^6 z^6+4 a^4 z^6-7 a^2 z^6+z^6 a^{-2} -5 z^6+3 a^7 z^5-4 a^5 z^5-18 a^3 z^5-20 a z^5-9 z^5 a^{-1} +a^8 z^4-6 a^6 z^4-14 a^4 z^4-8 a^2 z^4-3 z^4 a^{-2} -4 z^4-3 a^7 z^3+a^5 z^3+10 a^3 z^3+13 a z^3+7 z^3 a^{-1} -a^8 z^2+4 a^6 z^2+10 a^4 z^2+9 a^2 z^2+3 z^2 a^{-2} +7 z^2+a^7 z-2 a^3 z-2 a z-z a^{-1} -a^6-2 a^4-2 a^2- a^{-2} -1} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-q^{18}+2 q^{16}-2 q^{14}+q^{10}-2 q^8+2 q^6-2 q^4+2 q^2+1- q^{-2} +2 q^{-4} - q^{-6} + q^{-10} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+5 q^{106}-4 q^{104}-2 q^{102}+12 q^{100}-21 q^{98}+30 q^{96}-32 q^{94}+22 q^{92}-3 q^{90}-23 q^{88}+55 q^{86}-74 q^{84}+80 q^{82}-61 q^{80}+20 q^{78}+31 q^{76}-80 q^{74}+112 q^{72}-114 q^{70}+80 q^{68}-22 q^{66}-44 q^{64}+90 q^{62}-97 q^{60}+69 q^{58}-13 q^{56}-47 q^{54}+74 q^{52}-64 q^{50}+9 q^{48}+67 q^{46}-125 q^{44}+139 q^{42}-91 q^{40}+101 q^{36}-178 q^{34}+196 q^{32}-153 q^{30}+59 q^{28}+49 q^{26}-132 q^{24}+169 q^{22}-140 q^{20}+70 q^{18}+11 q^{16}-77 q^{14}+96 q^{12}-70 q^{10}+13 q^8+57 q^6-97 q^4+94 q^2-42-35 q^{-2} +106 q^{-4} -142 q^{-6} +126 q^{-8} -69 q^{-10} -11 q^{-12} +83 q^{-14} -120 q^{-16} +119 q^{-18} -77 q^{-20} +22 q^{-22} +24 q^{-24} -54 q^{-26} +57 q^{-28} -43 q^{-30} +24 q^{-32} -2 q^{-34} -9 q^{-36} +12 q^{-38} -10 q^{-40} +6 q^{-42} -2 q^{-44} + q^{-46} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-2 q^{13}+3 q^{11}-3 q^9+2 q^7-q^5-q^3+3 q-2 q^{-1} +3 q^{-3} -2 q^{-5} + q^{-7} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-2 q^{40}+6 q^{36}-8 q^{34}-2 q^{32}+15 q^{30}-15 q^{28}-5 q^{26}+24 q^{24}-15 q^{22}-11 q^{20}+21 q^{18}-3 q^{16}-13 q^{14}+5 q^{12}+11 q^{10}-7 q^8-13 q^6+17 q^4+4 q^2-22+15 q^{-2} +12 q^{-4} -22 q^{-6} +5 q^{-8} +14 q^{-10} -12 q^{-12} -2 q^{-14} +8 q^{-16} -2 q^{-18} -2 q^{-20} + q^{-22} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{81}-2 q^{79}+3 q^{75}+q^{73}-7 q^{71}-3 q^{69}+14 q^{67}+3 q^{65}-22 q^{63}-4 q^{61}+35 q^{59}+7 q^{57}-54 q^{55}-12 q^{53}+75 q^{51}+24 q^{49}-92 q^{47}-44 q^{45}+103 q^{43}+64 q^{41}-96 q^{39}-86 q^{37}+73 q^{35}+98 q^{33}-39 q^{31}-96 q^{29}-2 q^{27}+84 q^{25}+41 q^{23}-62 q^{21}-73 q^{19}+39 q^{17}+92 q^{15}-9 q^{13}-108 q^{11}-14 q^9+111 q^7+41 q^5-108 q^3-65 q+96 q^{-1} +87 q^{-3} -71 q^{-5} -103 q^{-7} +44 q^{-9} +103 q^{-11} -11 q^{-13} -92 q^{-15} -16 q^{-17} +70 q^{-19} +33 q^{-21} -45 q^{-23} -34 q^{-25} +20 q^{-27} +29 q^{-29} -4 q^{-31} -19 q^{-33} -2 q^{-35} +8 q^{-37} +3 q^{-39} -2 q^{-41} -2 q^{-43} + q^{-45} } |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-q^{52}+2 q^{48}-5 q^{44}+q^{42}+6 q^{40}-5 q^{38}-8 q^{36}+6 q^{34}+11 q^{32}-7 q^{30}-9 q^{28}+11 q^{26}+8 q^{24}-10 q^{22}-3 q^{20}+8 q^{18}-4 q^{16}-4 q^{14}+4 q^{12}+q^{10}-7 q^8+3 q^6+10 q^4-7 q^2-6+10 q^{-2} +6 q^{-4} -11 q^{-6} -4 q^{-8} +8 q^{-10} +4 q^{-12} -6 q^{-14} -3 q^{-16} +6 q^{-18} +3 q^{-20} -2 q^{-22} -2 q^{-24} + q^{-28} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-2 q^{46}+5 q^{42}-7 q^{40}-2 q^{38}+14 q^{36}-10 q^{34}-7 q^{32}+20 q^{30}-9 q^{28}-12 q^{26}+18 q^{24}-4 q^{22}-11 q^{20}+8 q^{18}+3 q^{16}-4 q^{14}-7 q^{12}+9 q^{10}+5 q^8-17 q^6+9 q^4+12 q^2-17+5 q^{-2} +12 q^{-4} -14 q^{-6} +4 q^{-8} +7 q^{-10} -7 q^{-12} +3 q^{-14} +2 q^{-16} -2 q^{-18} + q^{-20} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{29}+q^{25}-q^{23}+2 q^{21}-3 q^{19}+q^{17}-2 q^{15}+q^{13}-q^{11}+q^9+q^7-q^5+2 q^3-q+2 q^{-1} -2 q^{-3} +2 q^{-5} - q^{-7} + q^{-9} + q^{-13} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-2 q^{46}+4 q^{44}-7 q^{42}+11 q^{40}-14 q^{38}+18 q^{36}-20 q^{34}+21 q^{32}-20 q^{30}+15 q^{28}-8 q^{26}-2 q^{24}+12 q^{22}-23 q^{20}+32 q^{18}-39 q^{16}+42 q^{14}-41 q^{12}+37 q^{10}-29 q^8+19 q^6-7 q^4-2 q^2+11-17 q^{-2} +22 q^{-4} -22 q^{-6} +20 q^{-8} -17 q^{-10} +13 q^{-12} -9 q^{-14} +6 q^{-16} -2 q^{-18} + q^{-20} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{78}-2 q^{74}-2 q^{72}+2 q^{70}+6 q^{68}+q^{66}-9 q^{64}-8 q^{62}+6 q^{60}+16 q^{58}+3 q^{56}-17 q^{54}-14 q^{52}+10 q^{50}+22 q^{48}+q^{46}-21 q^{44}-11 q^{42}+15 q^{40}+17 q^{38}-8 q^{36}-18 q^{34}+2 q^{32}+17 q^{30}+3 q^{28}-15 q^{26}-6 q^{24}+12 q^{22}+8 q^{20}-11 q^{18}-10 q^{16}+10 q^{14}+13 q^{12}-8 q^{10}-19 q^8+2 q^6+22 q^4+10 q^2-18-19 q^{-2} +9 q^{-4} +24 q^{-6} +3 q^{-8} -19 q^{-10} -12 q^{-12} +11 q^{-14} +14 q^{-16} -2 q^{-18} -10 q^{-20} -3 q^{-22} +6 q^{-24} +4 q^{-26} -2 q^{-28} -2 q^{-30} + q^{-34} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+5 q^{106}-4 q^{104}-2 q^{102}+12 q^{100}-21 q^{98}+30 q^{96}-32 q^{94}+22 q^{92}-3 q^{90}-23 q^{88}+55 q^{86}-74 q^{84}+80 q^{82}-61 q^{80}+20 q^{78}+31 q^{76}-80 q^{74}+112 q^{72}-114 q^{70}+80 q^{68}-22 q^{66}-44 q^{64}+90 q^{62}-97 q^{60}+69 q^{58}-13 q^{56}-47 q^{54}+74 q^{52}-64 q^{50}+9 q^{48}+67 q^{46}-125 q^{44}+139 q^{42}-91 q^{40}+101 q^{36}-178 q^{34}+196 q^{32}-153 q^{30}+59 q^{28}+49 q^{26}-132 q^{24}+169 q^{22}-140 q^{20}+70 q^{18}+11 q^{16}-77 q^{14}+96 q^{12}-70 q^{10}+13 q^8+57 q^6-97 q^4+94 q^2-42-35 q^{-2} +106 q^{-4} -142 q^{-6} +126 q^{-8} -69 q^{-10} -11 q^{-12} +83 q^{-14} -120 q^{-16} +119 q^{-18} -77 q^{-20} +22 q^{-22} +24 q^{-24} -54 q^{-26} +57 q^{-28} -43 q^{-30} +24 q^{-32} -2 q^{-34} -9 q^{-36} +12 q^{-38} -10 q^{-40} +6 q^{-42} -2 q^{-44} + q^{-46} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 41"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-7 t^2+17 t-21+17 t^{-1} -7 t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-z^4-2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 71, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-3 q^2+6 q-8+11 q^{-1} -12 q^{-2} +11 q^{-3} -9 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6+a^6-2 z^4 a^4-4 z^2 a^4-2 a^4+z^6 a^2+3 z^4 a^2+4 z^2 a^2+2 a^2-2 z^4-4 z^2-1+z^2 a^{-2} + a^{-2} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3 z^9+a z^9+3 a^4 z^8+6 a^2 z^8+3 z^8+5 a^5 z^7+8 a^3 z^7+6 a z^7+3 z^7 a^{-1} +5 a^6 z^6+4 a^4 z^6-7 a^2 z^6+z^6 a^{-2} -5 z^6+3 a^7 z^5-4 a^5 z^5-18 a^3 z^5-20 a z^5-9 z^5 a^{-1} +a^8 z^4-6 a^6 z^4-14 a^4 z^4-8 a^2 z^4-3 z^4 a^{-2} -4 z^4-3 a^7 z^3+a^5 z^3+10 a^3 z^3+13 a z^3+7 z^3 a^{-1} -a^8 z^2+4 a^6 z^2+10 a^4 z^2+9 a^2 z^2+3 z^2 a^{-2} +7 z^2+a^7 z-2 a^3 z-2 a z-z a^{-1} -a^6-2 a^4-2 a^2- a^{-2} -1} |
Vassiliev invariants
| V2 and V3: | (-2, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 41. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | χ | |||||||||
| 7 | 1 | 1 | |||||||||||||||||||
| 5 | 2 | -2 | |||||||||||||||||||
| 3 | 4 | 1 | 3 | ||||||||||||||||||
| 1 | 4 | 2 | -2 | ||||||||||||||||||
| -1 | 7 | 4 | 3 | ||||||||||||||||||
| -3 | 6 | 5 | -1 | ||||||||||||||||||
| -5 | 5 | 6 | -1 | ||||||||||||||||||
| -7 | 4 | 6 | 2 | ||||||||||||||||||
| -9 | 2 | 5 | -3 | ||||||||||||||||||
| -11 | 1 | 4 | 3 | ||||||||||||||||||
| -13 | 2 | -2 | |||||||||||||||||||
| -15 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 41]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 41]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],X[9, 20, 10, 1], X[15, 19, 16, 18], X[13, 8, 14, 9], X[17, 6, 18, 7],X[7, 16, 8, 17], X[19, 15, 20, 14]] |
In[4]:= | GaussCode[Knot[10, 41]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8, 6, -10, 5] |
In[5]:= | BR[Knot[10, 41]] |
Out[5]= | BR[5, {1, -2, 1, -2, -2, 3, -2, -4, 3, -4}] |
In[6]:= | alex = Alexander[Knot[10, 41]][t] |
Out[6]= | -3 7 17 2 3 |
In[7]:= | Conway[Knot[10, 41]][z] |
Out[7]= | 2 4 6 1 - 2 z - z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 41], Knot[11, NonAlternating, 5]} |
In[9]:= | {KnotDet[Knot[10, 41]], KnotSignature[Knot[10, 41]]} |
Out[9]= | {71, -2} |
In[10]:= | J=Jones[Knot[10, 41]][q] |
Out[10]= | -7 3 6 9 11 12 11 2 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 41], Knot[10, 94]} |
In[12]:= | A2Invariant[Knot[10, 41]][q] |
Out[12]= | -22 -18 2 2 -10 2 2 2 2 2 4 |
In[13]:= | Kauffman[Knot[10, 41]][a, z] |
Out[13]= | 2-2 2 4 6 z 3 7 2 3 z |
In[14]:= | {Vassiliev[2][Knot[10, 41]], Vassiliev[3][Knot[10, 41]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Knot[10, 41]][q, t] |
Out[15]= | 5 7 1 2 1 4 2 5 4 |


