9 39

From Knot Atlas
Revision as of 20:51, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 38.gif

9_38

9 40.gif

9_40

9 39.gif Visit 9 39's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 39's page at Knotilus!

Visit 9 39's page at the original Knot Atlas!

9 39 Quick Notes


9 39 Further Notes and Views

Knot presentations

Planar diagram presentation X1627 X3,11,4,10 X7,18,8,1 X17,13,18,12 X9,17,10,16 X5,15,6,14 X15,5,16,4 X11,3,12,2 X13,9,14,8
Gauss code -1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3
Dowker-Thistlethwaite code 6 10 14 18 16 2 8 4 12
Conway Notation [2:2:20]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-1][-10]
Hyperbolic Volume 12.8103
A-Polynomial See Data:9 39/A-polynomial

[edit Notes for 9 39's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 2

[edit Notes for 9 39's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -3 t^2+14 t-21+14 t^{-1} -3 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -3 z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 55, 2 }
Jones polynomial [math]\displaystyle{ -q^8+3 q^7-6 q^6+8 q^5-9 q^4+10 q^3-8 q^2+6 q-3+ q^{-1} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^4 a^{-2} -2 z^4 a^{-4} +z^2 a^{-2} -3 z^2 a^{-4} +3 z^2 a^{-6} +z^2+2 a^{-2} -2 a^{-4} +2 a^{-6} - a^{-8} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^8 a^{-4} +2 z^8 a^{-6} +5 z^7 a^{-3} +9 z^7 a^{-5} +4 z^7 a^{-7} +5 z^6 a^{-2} +5 z^6 a^{-4} +3 z^6 a^{-6} +3 z^6 a^{-8} +3 z^5 a^{-1} -7 z^5 a^{-3} -18 z^5 a^{-5} -7 z^5 a^{-7} +z^5 a^{-9} -7 z^4 a^{-2} -15 z^4 a^{-4} -13 z^4 a^{-6} -6 z^4 a^{-8} +z^4-3 z^3 a^{-1} +5 z^3 a^{-3} +12 z^3 a^{-5} +2 z^3 a^{-7} -2 z^3 a^{-9} +5 z^2 a^{-2} +12 z^2 a^{-4} +9 z^2 a^{-6} +3 z^2 a^{-8} -z^2-z a^{-3} -3 z a^{-5} -z a^{-7} +z a^{-9} -2 a^{-2} -2 a^{-4} -2 a^{-6} - a^{-8} }[/math]
The A2 invariant [math]\displaystyle{ q^4-q^2-1+3 q^{-2} - q^{-4} +2 q^{-6} + q^{-8} - q^{-10} + q^{-12} -2 q^{-14} +2 q^{-16} - q^{-20} +2 q^{-22} - q^{-24} - q^{-26} }[/math]
The G2 invariant [math]\displaystyle{ q^{18}-2 q^{16}+4 q^{14}-6 q^{12}+5 q^{10}-3 q^8-2 q^6+12 q^4-19 q^2+28-30 q^{-2} +21 q^{-4} -3 q^{-6} -27 q^{-8} +58 q^{-10} -76 q^{-12} +73 q^{-14} -45 q^{-16} -6 q^{-18} +63 q^{-20} -97 q^{-22} +101 q^{-24} -61 q^{-26} +2 q^{-28} +53 q^{-30} -80 q^{-32} +65 q^{-34} -12 q^{-36} -45 q^{-38} +87 q^{-40} -83 q^{-42} +36 q^{-44} +37 q^{-46} -103 q^{-48} +134 q^{-50} -123 q^{-52} +66 q^{-54} +10 q^{-56} -84 q^{-58} +131 q^{-60} -134 q^{-62} +95 q^{-64} -29 q^{-66} -43 q^{-68} +87 q^{-70} -93 q^{-72} +59 q^{-74} -52 q^{-78} +80 q^{-80} -61 q^{-82} +8 q^{-84} +57 q^{-86} -100 q^{-88} +103 q^{-90} -65 q^{-92} - q^{-94} +60 q^{-96} -93 q^{-98} +95 q^{-100} -63 q^{-102} +19 q^{-104} +19 q^{-106} -45 q^{-108} +45 q^{-110} -33 q^{-112} +17 q^{-114} -3 q^{-116} -6 q^{-118} +8 q^{-120} -8 q^{-122} +5 q^{-124} -2 q^{-126} + q^{-128} }[/math]

Vassiliev invariants

V2 and V3: (2, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{460}{3} }[/math] [math]\displaystyle{ \frac{116}{3} }[/math] [math]\displaystyle{ 256 }[/math] [math]\displaystyle{ \frac{2144}{3} }[/math] [math]\displaystyle{ \frac{320}{3} }[/math] [math]\displaystyle{ 192 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ \frac{3680}{3} }[/math] [math]\displaystyle{ \frac{928}{3} }[/math] [math]\displaystyle{ \frac{49111}{15} }[/math] [math]\displaystyle{ -\frac{8524}{15} }[/math] [math]\displaystyle{ \frac{97084}{45} }[/math] [math]\displaystyle{ \frac{857}{9} }[/math] [math]\displaystyle{ \frac{5191}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of 9 39. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-2-101234567χ
17         1-1
15        2 2
13       41 -3
11      42  2
9     54   -1
7    54    1
5   35     2
3  35      -2
1 14       3
-1 2        -2
-31         1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 39]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 39]]
Out[3]=  
PD[X[1, 6, 2, 7], X[3, 11, 4, 10], X[7, 18, 8, 1], X[17, 13, 18, 12], 
 X[9, 17, 10, 16], X[5, 15, 6, 14], X[15, 5, 16, 4], X[11, 3, 12, 2], 

X[13, 9, 14, 8]]
In[4]:=
GaussCode[Knot[9, 39]]
Out[4]=  
GaussCode[-1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3]
In[5]:=
BR[Knot[9, 39]]
Out[5]=  
BR[5, {1, 1, 2, -1, -3, -2, 1, 4, 3, -2, 3, 4}]
In[6]:=
alex = Alexander[Knot[9, 39]][t]
Out[6]=  
      3    14             2

-21 - -- + -- + 14 t - 3 t

      2   t
t
In[7]:=
Conway[Knot[9, 39]][z]
Out[7]=  
       2      4
1 + 2 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 39], Knot[11, NonAlternating, 162]}
In[9]:=
{KnotDet[Knot[9, 39]], KnotSignature[Knot[9, 39]]}
Out[9]=  
{55, 2}
In[10]:=
J=Jones[Knot[9, 39]][q]
Out[10]=  
     1            2       3      4      5      6      7    8

-3 + - + 6 q - 8 q + 10 q - 9 q + 8 q - 6 q + 3 q - q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 39], Knot[11, NonAlternating, 11], 
  Knot[11, NonAlternating, 112]}
In[12]:=
A2Invariant[Knot[9, 39]][q]
Out[12]=  
      -4    -2      2    4      6    8    10    12      14      16

-1 + q - q + 3 q - q + 2 q + q - q + q - 2 q + 2 q -

  20      22    24    26
q + 2 q - q - q
In[13]:=
Kauffman[Knot[9, 39]][a, z]
Out[13]=  
                                                   2      2       2
 -8   2    2    2    z    z    3 z   z     2   3 z    9 z    12 z

-a - -- - -- - -- + -- - -- - --- - -- - z + ---- + ---- + ----- +

       6    4    2    9    7    5     3          8      6      4
      a    a    a    a    a    a     a          a      a      a

    2      3      3       3      3      3           4       4
 5 z    2 z    2 z    12 z    5 z    3 z     4   6 z    13 z
 ---- - ---- + ---- + ----- + ---- - ---- + z  - ---- - ----- - 
   2      9      7      5       3     a            8      6
  a      a      a      a       a                  a      a

     4      4    5      5       5      5      5      6      6      6
 15 z    7 z    z    7 z    18 z    7 z    3 z    3 z    3 z    5 z
 ----- - ---- + -- - ---- - ----- - ---- + ---- + ---- + ---- + ---- + 
   4       2     9     7      5       3     a       8      6      4
  a       a     a     a      a       a             a      a      a

    6      7      7      7      8      8
 5 z    4 z    9 z    5 z    2 z    2 z
 ---- + ---- + ---- + ---- + ---- + ----
   2      7      5      3      6      4
a a a a a a
In[14]:=
{Vassiliev[2][Knot[9, 39]], Vassiliev[3][Knot[9, 39]]}
Out[14]=  
{0, 4}
In[15]:=
Kh[Knot[9, 39]][q, t]
Out[15]=  
         3     1      2    q      3        5        5  2      7  2

4 q + 3 q + ----- + --- + - + 5 q t + 3 q t + 5 q t + 5 q t +

             3  2   q t   t
            q  t

    7  3      9  3      9  4      11  4      11  5      13  5
 4 q  t  + 5 q  t  + 4 q  t  + 4 q   t  + 2 q   t  + 4 q   t  + 

  13  6      15  6    17  7
q t + 2 q t + q t