K11n148

From Knot Atlas
Revision as of 16:22, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

K11n147.gif

K11n147

K11n149.gif

K11n149

K11n148.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n148 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X14,4,15,3 X5,19,6,18 X7,20,8,21 X9,1,10,22 X11,6,12,7 X2,14,3,13 X15,9,16,8 X17,10,18,11 X19,13,20,12 X21,16,22,17
Gauss code 1, -7, 2, -1, -3, 6, -4, 8, -5, 9, -6, 10, 7, -2, -8, 11, -9, 3, -10, 4, -11, 5
Dowker-Thistlethwaite code 4 14 -18 -20 -22 -6 2 -8 -10 -12 -16
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11n148 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n148/ThurstonBennequinNumber
Hyperbolic Volume 15.4617
A-Polynomial See Data:K11n148/A-polynomial

[edit Notes for K11n148's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11n148's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 75, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11n148/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a223,}

Same Jones Polynomial (up to mirroring, ): {K11n168,}

Vassiliev invariants

V2 and V3: (3, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11n148. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012345χ
13         2-2
11        3 3
9       62 -4
7      63  3
5     66   0
3    76    1
1   47     3
-1  36      -3
-3 14       3
-5 3        -3
-71         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n147.gif

K11n147

K11n149.gif

K11n149