K11n147

From Knot Atlas
Jump to navigationJump to search

K11n146.gif

K11n146

K11n148.gif

K11n148

K11n147.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n147 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X14,4,15,3 X5,11,6,10 X7,20,8,21 X9,1,10,22 X11,19,12,18 X2,14,3,13 X15,9,16,8 X17,6,18,7 X19,13,20,12 X21,16,22,17
Gauss code 1, -7, 2, -1, -3, 9, -4, 8, -5, 3, -6, 10, 7, -2, -8, 11, -9, 6, -10, 4, -11, 5
Dowker-Thistlethwaite code 4 14 -10 -20 -22 -18 2 -8 -6 -12 -16
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11n147 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11n147's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^4-4 t^3+7 t^2-5 t+3-5 t^{-1} +7 t^{-2} -4 t^{-3} + t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ z^8+4 z^6+3 z^4+3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 37, 4 }
Jones polynomial [math]\displaystyle{ -2 q^7+4 q^6-5 q^5+6 q^4-6 q^3+6 q^2-4 q+3- q^{-1} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^8 a^{-4} -z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -4 z^4 a^{-2} +12 z^4 a^{-4} -5 z^4 a^{-6} -3 z^2 a^{-2} +11 z^2 a^{-4} -6 z^2 a^{-6} +z^2 a^{-8} +3 a^{-4} -2 a^{-6} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^9 a^{-3} +2 z^9 a^{-5} +3 z^8 a^{-2} +7 z^8 a^{-4} +4 z^8 a^{-6} +z^7 a^{-1} -6 z^7 a^{-3} -5 z^7 a^{-5} +2 z^7 a^{-7} -14 z^6 a^{-2} -32 z^6 a^{-4} -18 z^6 a^{-6} -4 z^5 a^{-1} -2 z^5 a^{-3} -5 z^5 a^{-5} -7 z^5 a^{-7} +18 z^4 a^{-2} +41 z^4 a^{-4} +24 z^4 a^{-6} +z^4 a^{-8} +4 z^3 a^{-1} +9 z^3 a^{-3} +12 z^3 a^{-5} +7 z^3 a^{-7} -7 z^2 a^{-2} -19 z^2 a^{-4} -12 z^2 a^{-6} -z a^{-1} -3 z a^{-3} -5 z a^{-5} -2 z a^{-7} +z a^{-9} +3 a^{-4} +2 a^{-6} }[/math]
The A2 invariant [math]\displaystyle{ -q^2+1+ q^{-4} + q^{-6} + q^{-8} +2 q^{-10} -2 q^{-12} +2 q^{-14} - q^{-16} + q^{-18} - q^{-22} -2 q^{-26} + q^{-28} }[/math]
The G2 invariant Data:K11n147/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (3, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 158 }[/math] [math]\displaystyle{ 10 }[/math] [math]\displaystyle{ 480 }[/math] [math]\displaystyle{ \frac{2320}{3} }[/math] [math]\displaystyle{ \frac{352}{3} }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 800 }[/math] [math]\displaystyle{ 1896 }[/math] [math]\displaystyle{ 120 }[/math] [math]\displaystyle{ \frac{37871}{10} }[/math] [math]\displaystyle{ \frac{1098}{5} }[/math] [math]\displaystyle{ \frac{17462}{15} }[/math] [math]\displaystyle{ \frac{17}{6} }[/math] [math]\displaystyle{ \frac{1231}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11n147. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
15        2-2
13       2 2
11      32 -1
9     32  1
7    33   0
5   33    0
3  24     2
1 12      -1
-1 2       2
-31        -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n146.gif

K11n146

K11n148.gif

K11n148