http://www.textgetcobocr.com
Knot presentations
Planar diagram presentation
|
X1425 X3849 X5,12,6,13 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X11,6,12,7 X7283
|
Gauss code
|
-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, 7
|
Dowker-Thistlethwaite code
|
4 8 12 2 16 6 18 20 10 14
|
Conway Notation
|
[(3,2)(21,2)]
|
Minimum Braid Representative
|
A Morse Link Presentation
|
An Arc Presentation
|
Length is 11, width is 4,
Braid index is 4
|
|
![10 80 AP.gif](/images/a/a9/10_80_AP.gif) [{13, 2}, {1, 11}, {9, 12}, {11, 13}, {10, 3}, {2, 9}, {7, 10}, {8, 4}, {3, 5}, {12, 7}, {4, 6}, {5, 8}, {6, 1}]
|
[edit Notes on presentations of 10 80]
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 80"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X5,12,6,13 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X11,6,12,7 X7283
|
Out[5]=
|
-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, 7
|
Out[6]=
|
4 8 12 2 16 6 18 20 10 14
|
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
In[11]:=
|
Show[BraidPlot[br]]
|
In[12]:=
|
Show[DrawMorseLink[K]]
|
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{13, 2}, {1, 11}, {9, 12}, {11, 13}, {10, 3}, {2, 9}, {7, 10}, {8, 4}, {3, 5}, {12, 7}, {4, 6}, {5, 8}, {6, 1}]
|
Four dimensional invariants
Polynomial invariants
Alexander polynomial |
![{\displaystyle 3t^{3}-9t^{2}+15t-17+15t^{-1}-9t^{-2}+3t^{-3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/16fd1df0a6b5ddf2656a6483c0a1c5550a9b8d86) |
Conway polynomial |
![{\displaystyle 3z^{6}+9z^{4}+6z^{2}+1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/80b2f6692ed122dce0b03a426d1a416015e66098) |
2nd Alexander ideal (db, data sources) |
![{\displaystyle \{1\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5acdcac635f883f8b4f0a01aa03b16b22f23b124) |
Determinant and Signature |
{ 71, -6 } |
Jones polynomial |
![{\displaystyle q^{-3}-2q^{-4}+6q^{-5}-8q^{-6}+11q^{-7}-12q^{-8}+11q^{-9}-10q^{-10}+6q^{-11}-3q^{-12}+q^{-13}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f7d3dc301d0ef87a711f2e9b2fc264dd178f75ed) |
HOMFLY-PT polynomial (db, data sources) |
![{\displaystyle z^{2}a^{12}+2a^{12}-3z^{4}a^{10}-9z^{2}a^{10}-6a^{10}+2z^{6}a^{8}+8z^{4}a^{8}+9z^{2}a^{8}+3a^{8}+z^{6}a^{6}+4z^{4}a^{6}+5z^{2}a^{6}+2a^{6}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5430a6e5a9db53d6d99047079ca82810ce594c8d) |
Kauffman polynomial (db, data sources) |
![{\displaystyle z^{4}a^{16}-z^{2}a^{16}+3z^{5}a^{15}-3z^{3}a^{15}+za^{15}+5z^{6}a^{14}-5z^{4}a^{14}+2z^{2}a^{14}+6z^{7}a^{13}-8z^{5}a^{13}+6z^{3}a^{13}-2za^{13}+4z^{8}a^{12}-z^{6}a^{12}-5z^{4}a^{12}+2z^{2}a^{12}+2a^{12}+z^{9}a^{11}+10z^{7}a^{11}-29z^{5}a^{11}+29z^{3}a^{11}-12za^{11}+7z^{8}a^{10}-15z^{6}a^{10}+13z^{4}a^{10}-13z^{2}a^{10}+6a^{10}+z^{9}a^{9}+6z^{7}a^{9}-23z^{5}a^{9}+22z^{3}a^{9}-8za^{9}+3z^{8}a^{8}-8z^{6}a^{8}+8z^{4}a^{8}-7z^{2}a^{8}+3a^{8}+2z^{7}a^{7}-5z^{5}a^{7}+2z^{3}a^{7}+za^{7}+z^{6}a^{6}-4z^{4}a^{6}+5z^{2}a^{6}-2a^{6}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1a8975e700a9c67129a8ed67d592684751dcd4e5) |
The A2 invariant |
![{\displaystyle q^{40}+q^{38}-q^{36}+q^{34}-3q^{32}-2q^{30}-q^{28}-3q^{26}+3q^{24}-q^{22}+3q^{20}+2q^{18}+3q^{14}-q^{12}+q^{10}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00cf6e571d300102c90eb5becbfcf659e29f013a) |
The G2 invariant |
![{\displaystyle q^{210}-2q^{208}+4q^{206}-6q^{204}+5q^{202}-4q^{200}-2q^{198}+11q^{196}-20q^{194}+28q^{192}-32q^{190}+25q^{188}-8q^{186}-19q^{184}+54q^{182}-78q^{180}+88q^{178}-74q^{176}+29q^{174}+32q^{172}-94q^{170}+139q^{168}-135q^{166}+89q^{164}-9q^{162}-71q^{160}+123q^{158}-119q^{156}+67q^{154}+16q^{152}-87q^{150}+111q^{148}-74q^{146}-12q^{144}+110q^{142}-174q^{140}+165q^{138}-94q^{136}-29q^{134}+143q^{132}-219q^{130}+216q^{128}-150q^{126}+31q^{124}+83q^{122}-168q^{120}+182q^{118}-135q^{116}+42q^{114}+50q^{112}-112q^{110}+114q^{108}-58q^{106}-25q^{104}+104q^{102}-135q^{100}+105q^{98}-22q^{96}-75q^{94}+152q^{92}-166q^{90}+126q^{88}-41q^{86}-48q^{84}+111q^{82}-123q^{80}+102q^{78}-49q^{76}+36q^{72}-49q^{70}+43q^{68}-25q^{66}+11q^{64}+2q^{62}-6q^{60}+7q^{58}-5q^{56}+4q^{54}-q^{52}+q^{50}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ba1617eeb9f38abf2128e6b9680a7704699e0f8) |
Further Quantum Invariants
Further quantum knot invariants for 10_80.
A1 Invariants.
Weight
|
Invariant
|
1
|
|
2
|
|
3
|
|
4
|
|
5
|
|
A2 Invariants.
Weight
|
Invariant
|
1,0
|
|
1,1
|
|
2,0
|
|
A3 Invariants.
Weight
|
Invariant
|
0,1,0
|
|
1,0,0
|
|
A4 Invariants.
Weight
|
Invariant
|
0,1,0,0
|
|
1,0,0,0
|
|
B2 Invariants.
Weight
|
Invariant
|
0,1
|
|
1,0
|
|
D4 Invariants.
Weight
|
Invariant
|
1,0,0,0
|
|
G2 Invariants.
Weight
|
Invariant
|
1,0
|
|
.
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 80"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{}
Same Jones Polynomial (up to mirroring,
):
{}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 80"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , }
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 10 80. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
-10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | χ |
-5 | | | | | | | | | | | 1 | 1 |
-7 | | | | | | | | | | 2 | 1 | -1 |
-9 | | | | | | | | | 4 | | | 4 |
-11 | | | | | | | | 4 | 2 | | | -2 |
-13 | | | | | | | 7 | 4 | | | | 3 |
-15 | | | | | | 5 | 4 | | | | | -1 |
-17 | | | | | 6 | 7 | | | | | | -1 |
-19 | | | | 4 | 5 | | | | | | | 1 |
-21 | | | 2 | 6 | | | | | | | | -4 |
-23 | | 1 | 4 | | | | | | | | | 3 |
-25 | | 2 | | | | | | | | | | -2 |
-27 | 1 | | | | | | | | | | | 1 |
|
The Coloured Jones Polynomials