T(27,2)

From Knot Atlas
Revision as of 21:46, 26 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search


[[Image:T(9,4).{{{ext}}}|80px|link=T(9,4)]]

T(9,4)

[[Image:T(7,5).{{{ext}}}|80px|link=T(7,5)]]

T(7,5)

T(27,2).jpg Visit T(27,2)'s page at Knotilus!

Visit T(27,2)'s page at the original Knot Atlas!

T(27,2) Quick Notes


T(27,2) Further Notes and Views

Knot presentations

Planar diagram presentation X21,49,22,48 X49,23,50,22 X23,51,24,50 X51,25,52,24 X25,53,26,52 X53,27,54,26 X27,1,28,54 X1,29,2,28 X29,3,30,2 X3,31,4,30 X31,5,32,4 X5,33,6,32 X33,7,34,6 X7,35,8,34 X35,9,36,8 X9,37,10,36 X37,11,38,10 X11,39,12,38 X39,13,40,12 X13,41,14,40 X41,15,42,14 X15,43,16,42 X43,17,44,16 X17,45,18,44 X45,19,46,18 X19,47,20,46 X47,21,48,20
Gauss code {-8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 1, -2, 3, -4, 5, -6, 7}
Dowker-Thistlethwaite code 28 30 32 34 36 38 40 42 44 46 48 50 52 54 2 4 6 8 10 12 14 16 18 20 22 24 26

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, 26 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(27,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(27,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 819}

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 26 is the signature of T(27,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123456789101112131415161718192021222324252627χ
81                           1-1
79                            0
77                         11 0
75                            0
73                       11   0
71                            0
69                     11     0
67                            0
65                   11       0
63                            0
61                 11         0
59                            0
57               11           0
55                            0
53             11             0
51                            0
49           11               0
47                            0
45         11                 0
43                            0
41       11                   0
39                            0
37     11                     0
35                            0
33   11                       0
31                            0
29  1                         1
271                           1
251                           1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[27, 2]]
Out[2]=  
27
In[3]:=
PD[TorusKnot[27, 2]]
Out[3]=  
PD[X[21, 49, 22, 48], X[49, 23, 50, 22], X[23, 51, 24, 50], 
 X[51, 25, 52, 24], X[25, 53, 26, 52], X[53, 27, 54, 26], 

 X[27, 1, 28, 54], X[1, 29, 2, 28], X[29, 3, 30, 2], X[3, 31, 4, 30], 

 X[31, 5, 32, 4], X[5, 33, 6, 32], X[33, 7, 34, 6], X[7, 35, 8, 34], 

 X[35, 9, 36, 8], X[9, 37, 10, 36], X[37, 11, 38, 10], 

 X[11, 39, 12, 38], X[39, 13, 40, 12], X[13, 41, 14, 40], 

 X[41, 15, 42, 14], X[15, 43, 16, 42], X[43, 17, 44, 16], 

 X[17, 45, 18, 44], X[45, 19, 46, 18], X[19, 47, 20, 46], 

X[47, 21, 48, 20]]
In[4]:=
GaussCode[TorusKnot[27, 2]]
Out[4]=  
GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, 
 -22, 23, -24, 25, -26, 27, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 

 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, 

-27, 1, -2, 3, -4, 5, -6, 7]
In[5]:=
BR[TorusKnot[27, 2]]
Out[5]=  
BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
   1, 1, 1, 1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[27, 2]][t]
Out[6]=  
      -13    -12    -11    -10    -9    -8    -7    -6    -5    -4

-1 + t - t + t - t + t - t + t - t + t - t +

  -3    -2   1        2    3    4    5    6    7    8    9    10
 t   - t   + - + t - t  + t  - t  + t  - t  + t  - t  + t  - t   + 
             t

  11    12    13
t - t + t
In[7]:=
Conway[TorusKnot[27, 2]][z]
Out[7]=  
        2         4         6          8          10          12

1 + 91 z + 1365 z + 8008 z + 24310 z + 43758 z + 50388 z +

        14          16         18         20        22       24    26
38760 z + 20349 z + 7315 z + 1771 z + 276 z + 25 z + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[27, 2]], KnotSignature[TorusKnot[27, 2]]}
Out[9]=  
{27, 26}
In[10]:=
J=Jones[TorusKnot[27, 2]][q]
Out[10]=  
 13    15    16    17    18    19    20    21    22    23    24    25

q + q - q + q - q + q - q + q - q + q - q + q -

  26    27    28    29    30    31    32    33    34    35    36
 q   + q   - q   + q   - q   + q   - q   + q   - q   + q   - q   + 

  37    38    39    40
q - q + q - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[27, 2]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[27, 2]][a, z]
Out[13]=  
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[27, 2]], Vassiliev[3][TorusKnot[27, 2]]}
Out[14]=  
{0, 819}
In[15]:=
Kh[TorusKnot[27, 2]][q, t]
Out[15]=  
 25    27    29  2    33  3    33  4    37  5    37  6    41  7

q + q + q t + q t + q t + q t + q t + q t +

  41  8    45  9    45  10    49  11    49  12    53  13    53  14
 q   t  + q   t  + q   t   + q   t   + q   t   + q   t   + q   t   + 

  57  15    57  16    61  17    61  18    65  19    65  20    69  21
 q   t   + q   t   + q   t   + q   t   + q   t   + q   t   + q   t   + 

  69  22    73  23    73  24    77  25    77  26    81  27
q t + q t + q t + q t + q t + q t