The Kauffman Polynomial
The Kauffman polynomial [math]\displaystyle{ F(K)(a,z) }[/math] (see [Kauffman]) of a knot or link [math]\displaystyle{ K }[/math] is [math]\displaystyle{ a^{-w(K)}L(K) }[/math] where [math]\displaystyle{ w(L) }[/math] is the writhe of [math]\displaystyle{ K }[/math] (see How is the Jones Polynomial Computed?) and where [math]\displaystyle{ L(K) }[/math] is the regular isotopy invariant defined by the skein relations
(here [math]\displaystyle{ s }[/math] is a strand and [math]\displaystyle{ s_\pm }[/math] is the same strand with a [math]\displaystyle{ \pm }[/math] kink added) and
(here [math]\displaystyle{ T_1 }[/math], [math]\displaystyle{ T_2 }[/math], [math]\displaystyle{ T_3 }[/math] and [math]\displaystyle{ T_4 }[/math] are
,
,
and
, respectively), and by the initial condition [math]\displaystyle{ L(U)=1 }[/math] where [math]\displaystyle{ U }[/math] is the unknot
.
KnotTheory` knows about the Kauffman polynomial:
(For In[1] see Setup)
Thus, for example, here's the Kauffman polynomial of the knot 5_2:
It is well known that the Jones polynomial is related to the Kauffman polynomial via
where [math]\displaystyle{ K }[/math] is some knot or link and where [math]\displaystyle{ c }[/math] is the number of components of [math]\displaystyle{ K }[/math]. Let us verify this fact for the torus knot T(8,3):
[Kauffman] ^ L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.