10 124
|
|
Visit 10 124's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 124's page at Knotilus! Visit 10 124's page at the original Knot Atlas! |
10_124 is also known as the torus knot T(5,3) or the pretzel knot P(5,3,-2). It is one of two knots which are both torus knots and pretzel knots, the other being 8_19 = T(4,3) = P(3,3,-2). |
If one takes the symmetric diagram for 10_123 and makes it doubly alternating one gets a diagram for 10_124. That's the torus knot view. There is then a nice representation of the quandle of 10_124 into the dodecahedral quandle . See [1].
10_124 is not -colourable for any . See The Determinant and the Signature.
Knot presentations
Planar diagram presentation | X4251 X8493 X9,17,10,16 X5,15,6,14 X15,7,16,6 X11,19,12,18 X13,1,14,20 X17,11,18,10 X19,13,20,12 X2837 |
Gauss code | 1, -10, 2, -1, -4, 5, 10, -2, -3, 8, -6, 9, -7, 4, -5, 3, -8, 6, -9, 7 |
Dowker-Thistlethwaite code | 4 8 -14 2 -16 -18 -20 -6 -10 -12 |
Conway Notation | [5,3,2-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 124"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 8 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (8, 20) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of 10 124. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ | |||||||||
21 | 1 | -1 | ||||||||||||||||
19 | 1 | -1 | ||||||||||||||||
17 | 1 | 1 | 0 | |||||||||||||||
15 | 1 | 1 | 0 | |||||||||||||||
13 | 1 | 1 | ||||||||||||||||
11 | 1 | 1 | ||||||||||||||||
9 | 1 | 1 | ||||||||||||||||
7 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 124]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 124]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[9, 17, 10, 16], X[5, 15, 6, 14],X[15, 7, 16, 6], X[11, 19, 12, 18], X[13, 1, 14, 20],X[17, 11, 18, 10], X[19, 13, 20, 12], X[2, 8, 3, 7]] |
In[4]:= | GaussCode[Knot[10, 124]] |
Out[4]= | GaussCode[1, -10, 2, -1, -4, 5, 10, -2, -3, 8, -6, 9, -7, 4, -5, 3, -8, 6, -9, 7] |
In[5]:= | BR[Knot[10, 124]] |
Out[5]= | BR[3, {1, 1, 1, 1, 1, 2, 1, 1, 1, 2}] |
In[6]:= | alex = Alexander[Knot[10, 124]][t] |
Out[6]= | -4 -3 1 3 4 |
In[7]:= | Conway[Knot[10, 124]][z] |
Out[7]= | 2 4 6 8 1 + 8 z + 14 z + 7 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 124]} |
In[9]:= | {KnotDet[Knot[10, 124]], KnotSignature[Knot[10, 124]]} |
Out[9]= | {1, 8} |
In[10]:= | J=Jones[Knot[10, 124]][q] |
Out[10]= | 4 6 10 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 124]} |
In[12]:= | A2Invariant[Knot[10, 124]][q] |
Out[12]= | 14 16 18 20 22 24 28 30 32 34 |
In[13]:= | Kauffman[Knot[10, 124]][a, z] |
Out[13]= | 2 2 2 3 32 8 7 8 z 8 z z 22 z 21 z 14 z 14 z |
In[14]:= | {Vassiliev[2][Knot[10, 124]], Vassiliev[3][Knot[10, 124]]} |
Out[14]= | {0, 20} |
In[15]:= | Kh[Knot[10, 124]][q, t] |
Out[15]= | 7 9 11 2 15 3 13 4 15 4 17 5 19 5 |