7 2

From Knot Atlas
Revision as of 20:42, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


7 1.gif

7_1

7 3.gif

7_3

7 2.gif Visit 7 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 2's page at Knotilus!

Visit 7 2's page at the original Knot Atlas!

7 2 Quick Notes


7 2 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,14,6,1 X7,12,8,13 X11,8,12,9 X13,6,14,7 X9,2,10,3
Gauss code -1, 7, -2, 1, -3, 6, -4, 5, -7, 2, -5, 4, -6, 3
Dowker-Thistlethwaite code 4 10 14 12 2 8 6
Conway Notation [52]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{$\$$Failed}}
Hyperbolic Volume 3.33174
A-Polynomial See Data:7 2/A-polynomial

[edit Notes for 7 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 7 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 11, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (3, -6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 7 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-7-6-5-4-3-2-10χ
-1       11
-3      110
-5     1  1
-7    11  0
-9   11   0
-11   1    1
-13 11     0
-15        0
-171       -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[7, 2]]
Out[2]=  
7
In[3]:=
PD[Knot[7, 2]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 1], X[7, 12, 8, 13], 
  X[11, 8, 12, 9], X[13, 6, 14, 7], X[9, 2, 10, 3]]
In[4]:=
GaussCode[Knot[7, 2]]
Out[4]=  
GaussCode[-1, 7, -2, 1, -3, 6, -4, 5, -7, 2, -5, 4, -6, 3]
In[5]:=
BR[Knot[7, 2]]
Out[5]=  
BR[4, {-1, -1, -1, -2, 1, -2, -3, 2, -3}]
In[6]:=
alex = Alexander[Knot[7, 2]][t]
Out[6]=  
     3

-5 + - + 3 t

t
In[7]:=
Conway[Knot[7, 2]][z]
Out[7]=  
       2
1 + 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[7, 2]}
In[9]:=
{KnotDet[Knot[7, 2]], KnotSignature[Knot[7, 2]]}
Out[9]=  
{11, -2}
In[10]:=
J=Jones[Knot[7, 2]][q]
Out[10]=  
  -8    -7    -6   2    2    2     -2   1

-q + q - q + -- - -- + -- - q + -

                   5    4    3         q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[7, 2], Knot[11, NonAlternating, 88]}
In[12]:=
A2Invariant[Knot[7, 2]][q]
Out[12]=  
  -26    -24    -18    -16    -8    -6    -2
-q    - q    + q    + q    + q   + q   + q
In[13]:=
Kauffman[Knot[7, 2]][a, z]
Out[13]=  
  2    6    8      7        9      2  2      6  2      8  2    3  3

-a - a - a + 3 a z + 3 a z + a z + 3 a z + 4 a z + a z -

  5  3      7  3      9  3    4  4      6  4      8  4    5  5
 a  z  - 6 a  z  - 4 a  z  + a  z  - 3 a  z  - 4 a  z  + a  z  + 

    7  5    9  5    6  6    8  6
2 a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[7, 2]], Vassiliev[3][Knot[7, 2]]}
Out[14]=  
{0, -6}
In[15]:=
Kh[Knot[7, 2]][q, t]
Out[15]=  
 -3   1     1        1        1        1        1       1       1

q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +

     q    17  7    13  6    13  5    11  4    9  4    9  3    7  3
         q   t    q   t    q   t    q   t    q  t    q  t    q  t

   1       1      1
 ----- + ----- + ----
  7  2    5  2    3
q t q t q t