8 14

From Knot Atlas
Revision as of 20:50, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


8 13.gif

8_13

8 15.gif

8_15

8 14.gif Visit 8 14's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 14's page at Knotilus!

Visit 8 14's page at the original Knot Atlas!

8 14 Quick Notes


8 14 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X7,14,8,15 X11,16,12,1 X15,12,16,13 X13,6,14,7
Gauss code -1, 4, -3, 1, -2, 8, -5, 3, -4, 2, -6, 7, -8, 5, -7, 6
Dowker-Thistlethwaite code 4 8 10 14 2 16 6 12
Conway Notation [22112]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-1]
Hyperbolic Volume 9.2178
A-Polynomial See Data:8 14/A-polynomial

[edit Notes for 8 14's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 8 14's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 31, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (0, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-6-5-4-3-2-1012χ
3        11
1       1 -1
-1      31 2
-3     32  -1
-5    32   1
-7   23    1
-9  23     -1
-11 12      1
-13 2       -2
-151        1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[8, 14]]
Out[2]=  
8
In[3]:=
PD[Knot[8, 14]]
Out[3]=  
PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], 
  X[7, 14, 8, 15], X[11, 16, 12, 1], X[15, 12, 16, 13], X[13, 6, 14, 7]]
In[4]:=
GaussCode[Knot[8, 14]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -2, 8, -5, 3, -4, 2, -6, 7, -8, 5, -7, 6]
In[5]:=
BR[Knot[8, 14]]
Out[5]=  
BR[4, {-1, -1, -1, -2, 1, -2, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[8, 14]][t]
Out[6]=  
      2    8            2

-11 - -- + - + 8 t - 2 t

      2   t
t
In[7]:=
Conway[Knot[8, 14]][z]
Out[7]=  
       4
1 - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 14], Knot[9, 8], Knot[10, 131]}
In[9]:=
{KnotDet[Knot[8, 14]], KnotSignature[Knot[8, 14]]}
Out[9]=  
{31, -2}
In[10]:=
J=Jones[Knot[8, 14]][q]
Out[10]=  
      -7   3    4    5    6    5    4

-2 + q - -- + -- - -- + -- - -- + - + q

           6    5    4    3    2   q
q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[8, 14]}
In[12]:=
A2Invariant[Knot[8, 14]][q]
Out[12]=  
 -22    -20    -18    -16    -14    -12    -6    -4   2     4

q - q - q + q - q + q + q - q + -- + q

                                                      2
q
In[13]:=
Kauffman[Knot[8, 14]][a, z]
Out[13]=  
             3        5      7        2    2  2      4  2    6  2

1 + a z + 3 a z + 3 a z + a z - 2 z - a z + 3 a z + a z -

  8  2        3      3  3      5  3      7  3    4    2  4      4  4
 a  z  - 3 a z  - 6 a  z  - 8 a  z  - 5 a  z  + z  - a  z  - 7 a  z  - 

    6  4    8  4        5      3  5      5  5      7  5      2  6
 4 a  z  + a  z  + 2 a z  + 3 a  z  + 4 a  z  + 3 a  z  + 2 a  z  + 

    4  6      6  6    3  7    5  7
5 a z + 3 a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[8, 14]], Vassiliev[3][Knot[8, 14]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[8, 14]][q, t]
Out[15]=  
2    3     1        2        1        2        2       3       2

-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +

3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3

q q t q t q t q t q t q t q t

   3       3      2      3     t          3  2
 ----- + ----- + ---- + ---- + - + q t + q  t
  7  2    5  2    5      3     q
q t q t q t q t