8_19 is the first non-homologically thin knot in the Rolfsen table. (That is, it's the first knot whose Khovanov homology has 'off-diagonal' elements.)
|
|
Symmetrical form ; (3,4) torus knot
|
|
True-lover's knot with sticked free ends
|
|
Equal to the previous, from knotilus
|
|
|
|
|
|
Knot presentations
Planar diagram presentation
|
X4251 X8493 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,1,12,16 X15,11,16,10 X2837
|
Gauss code
|
1, -8, 2, -1, -4, 5, 8, -2, -3, 7, -6, 4, -5, 3, -7, 6
|
Dowker-Thistlethwaite code
|
4 8 -12 2 -14 -16 -6 -10
|
Conway Notation
|
[3,3,2-]
|
Four dimensional invariants
Polynomial invariants
Alexander polynomial |
|
Conway polynomial |
|
2nd Alexander ideal (db, data sources) |
|
Determinant and Signature |
{ 3, 6 } |
Jones polynomial |
|
HOMFLY-PT polynomial (db, data sources) |
|
Kauffman polynomial (db, data sources) |
|
The A2 invariant |
|
The G2 invariant |
|
Further Quantum Invariants
Further quantum knot invariants for 8_19.
A1 Invariants.
Weight
|
Invariant
|
1
|
|
2
|
|
3
|
|
4
|
|
5
|
|
6
|
|
A2 Invariants.
Weight
|
Invariant
|
1,0
|
|
1,1
|
|
2,0
|
|
A3 Invariants.
Weight
|
Invariant
|
0,1,0
|
|
1,0,0
|
|
1,0,1
|
|
A4 Invariants.
Weight
|
Invariant
|
0,1,0,0
|
|
1,0,0,0
|
|
B2 Invariants.
Weight
|
Invariant
|
0,1
|
|
1,0
|
|
D4 Invariants.
Weight
|
Invariant
|
1,0,0,0
|
|
G2 Invariants.
Weight
|
Invariant
|
1,0
|
|
.
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["8 19"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 8 19. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | χ |
17 | | | | | | 1 | -1 |
15 | | | | | | 1 | -1 |
13 | | | | 1 | 1 | | 0 |
11 | | | | | 1 | | 1 |
9 | | | 1 | | | | 1 |
7 | 1 | | | | | | 1 |
5 | 1 | | | | | | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Knot[8, 19]] |
Out[2]= | 8 |
In[3]:= | PD[Knot[8, 19]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[9, 15, 10, 14], X[5, 13, 6, 12],
X[13, 7, 14, 6], X[11, 1, 12, 16], X[15, 11, 16, 10], X[2, 8, 3, 7]] |
In[4]:= | GaussCode[Knot[8, 19]] |
Out[4]= | GaussCode[1, -8, 2, -1, -4, 5, 8, -2, -3, 7, -6, 4, -5, 3, -7, 6] |
In[5]:= | BR[Knot[8, 19]] |
Out[5]= | BR[3, {1, 1, 1, 2, 1, 1, 1, 2}] |
In[6]:= | alex = Alexander[Knot[8, 19]][t] |
Out[6]= | -3 -2 2 3
1 + t - t - t + t |
In[7]:= | Conway[Knot[8, 19]][z] |
Out[7]= | 2 4 6
1 + 5 z + 5 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 19]} |
In[9]:= | {KnotDet[Knot[8, 19]], KnotSignature[Knot[8, 19]]} |
Out[9]= | {3, 6} |
In[10]:= | J=Jones[Knot[8, 19]][q] |
Out[10]= | 3 5 8
q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[8, 19]} |
In[12]:= | A2Invariant[Knot[8, 19]][q] |
Out[12]= | 10 12 14 16 18 22 24 26 28 32
q + q + 2 q + 2 q + 2 q - q - 2 q - 2 q - q + q |
In[13]:= | Kauffman[Knot[8, 19]][a, z] |
Out[13]= | 2 2 3 3 4
-10 5 5 5 z 5 z 10 z 10 z 5 z 5 z 6 z
-a - -- - -- + --- + --- + ----- + ----- - ---- - ---- - ---- -
8 6 9 7 8 6 9 7 8
a a a a a a a a a
4 5 5 6 6
6 z z z z z
---- + -- + -- + -- + --
6 9 7 8 6
a a a a a |
In[14]:= | {Vassiliev[2][Knot[8, 19]], Vassiliev[3][Knot[8, 19]]} |
Out[14]= | {0, 10} |
In[15]:= | Kh[Knot[8, 19]][q, t] |
Out[15]= | 5 7 9 2 13 3 11 4 13 4 15 5 17 5
q + q + q t + q t + q t + q t + q t + q t |