8 8

From Knot Atlas
Revision as of 19:11, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

8 7.gif

8_7

8 9.gif

8_9

8 8.gif Visit 8 8's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 8's page at Knotilus!

Visit 8 8's page at the original Knot Atlas!

8 8 Quick Notes


8 8 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,1,10,16 X15,11,16,10 X7283
Gauss code -1, 8, -2, 1, -4, 5, -8, 2, -6, 7, -3, 4, -5, 3, -7, 6
Dowker-Thistlethwaite code 4 8 12 2 16 14 6 10
Conway Notation [2312]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,5\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-6]
Hyperbolic Volume 7.80134
A-Polynomial See Data:8 8/A-polynomial

[edit Notes for 8 8's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 0 }[/math]
Topological 4 genus [math]\displaystyle{ 0 }[/math]
Concordance genus [math]\displaystyle{ 0 }[/math]
Rasmussen s-Invariant 0

[edit Notes for 8 8's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^2-6 t+9-6 t^{-1} +2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 25, 0 }
Jones polynomial [math]\displaystyle{ -q^5+2 q^4-3 q^3+4 q^2-4 q+5-3 q^{-1} +2 q^{-2} - q^{-3} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^4 a^{-2} +z^4-a^2 z^2+2 z^2 a^{-2} -z^2 a^{-4} +2 z^2-a^2+ a^{-2} - a^{-4} +2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^7 a^{-1} +z^7 a^{-3} +4 z^6 a^{-2} +2 z^6 a^{-4} +2 z^6+2 a z^5+z^5 a^{-1} +z^5 a^{-5} +2 a^2 z^4-9 z^4 a^{-2} -6 z^4 a^{-4} -z^4+a^3 z^3-3 z^3 a^{-1} -5 z^3 a^{-3} -3 z^3 a^{-5} -2 a^2 z^2+5 z^2 a^{-2} +4 z^2 a^{-4} -z^2-a^3 z-a z+z a^{-1} +3 z a^{-3} +2 z a^{-5} +a^2- a^{-2} - a^{-4} +2 }[/math]
The A2 invariant [math]\displaystyle{ -q^{10}-q^4+2 q^2+1+2 q^{-2} + q^{-4} + q^{-8} - q^{-10} - q^{-16} }[/math]
The G2 invariant [math]\displaystyle{ q^{52}-q^{50}+2 q^{48}-2 q^{46}-3 q^{40}+4 q^{38}-5 q^{36}+4 q^{34}-5 q^{32}+q^{30}+3 q^{28}-6 q^{26}+8 q^{24}-9 q^{22}+7 q^{20}-4 q^{18}-3 q^{16}+7 q^{14}-8 q^{12}+9 q^{10}-q^8-3 q^6+6 q^4-3 q^2+1+6 q^{-2} -10 q^{-4} +12 q^{-6} -5 q^{-8} +10 q^{-12} -14 q^{-14} +17 q^{-16} -11 q^{-18} +3 q^{-20} +4 q^{-22} -9 q^{-24} +14 q^{-26} -10 q^{-28} +6 q^{-30} + q^{-32} -5 q^{-34} +7 q^{-36} -5 q^{-38} +4 q^{-42} -8 q^{-44} +7 q^{-46} -3 q^{-48} -4 q^{-50} +10 q^{-52} -13 q^{-54} +10 q^{-56} -5 q^{-58} -4 q^{-60} +7 q^{-62} -10 q^{-64} +9 q^{-66} -5 q^{-68} +2 q^{-72} -4 q^{-74} +3 q^{-76} - q^{-78} + q^{-80} }[/math]

Vassiliev invariants

V2 and V3: (2, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{124}{3} }[/math] [math]\displaystyle{ -\frac{4}{3} }[/math] [math]\displaystyle{ 64 }[/math] [math]\displaystyle{ \frac{272}{3} }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{992}{3} }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ \frac{6271}{15} }[/math] [math]\displaystyle{ \frac{1516}{15} }[/math] [math]\displaystyle{ \frac{484}{45} }[/math] [math]\displaystyle{ \frac{113}{9} }[/math] [math]\displaystyle{ -\frac{449}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 8 8. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
11        1-1
9       1 1
7      21 -1
5     21  1
3    22   0
1   32    1
-1  13     2
-3 12      -1
-5 1       1
-71        -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[8, 8]]
Out[2]=  
8
In[3]:=
PD[Knot[8, 8]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12], 
  X[13, 7, 14, 6], X[9, 1, 10, 16], X[15, 11, 16, 10], X[7, 2, 8, 3]]
In[4]:=
GaussCode[Knot[8, 8]]
Out[4]=  
GaussCode[-1, 8, -2, 1, -4, 5, -8, 2, -6, 7, -3, 4, -5, 3, -7, 6]
In[5]:=
BR[Knot[8, 8]]
Out[5]=  
BR[4, {1, 1, 1, 2, -1, -3, 2, -3, -3}]
In[6]:=
alex = Alexander[Knot[8, 8]][t]
Out[6]=  
    2    6            2

9 + -- - - - 6 t + 2 t

    2   t
t
In[7]:=
Conway[Knot[8, 8]][z]
Out[7]=  
       2      4
1 + 2 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 8], Knot[10, 129], Knot[11, NonAlternating, 39], 
 Knot[11, NonAlternating, 45], Knot[11, NonAlternating, 50], 

Knot[11, NonAlternating, 132]}
In[9]:=
{KnotDet[Knot[8, 8]], KnotSignature[Knot[8, 8]]}
Out[9]=  
{25, 0}
In[10]:=
J=Jones[Knot[8, 8]][q]
Out[10]=  
     -3   2    3            2      3      4    5

5 - q + -- - - - 4 q + 4 q - 3 q + 2 q - q

          2   q
q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[8, 8], Knot[10, 129]}
In[12]:=
A2Invariant[Knot[8, 8]][q]
Out[12]=  
     -10    -4   2       2    4    8    10    16

1 - q - q + -- + 2 q + q + q - q - q

                 2
q
In[13]:=
Kauffman[Knot[8, 8]][a, z]
Out[13]=  
                                                          2      2
    -4    -2    2   2 z   3 z   z          3      2   4 z    5 z

2 - a - a + a + --- + --- + - - a z - a z - z + ---- + ---- -

                     5     3    a                       4      2
                    a     a                            a      a

              3      3      3                   4      4
    2  2   3 z    5 z    3 z     3  3    4   6 z    9 z       2  4
 2 a  z  - ---- - ---- - ---- + a  z  - z  - ---- - ---- + 2 a  z  + 
             5      3     a                    4      2
            a      a                          a      a

  5    5                      6      6    7    7
 z    z         5      6   2 z    4 z    z    z
 -- + -- + 2 a z  + 2 z  + ---- + ---- + -- + --
  5   a                      4      2     3   a
a a a a
In[14]:=
{Vassiliev[2][Knot[8, 8]], Vassiliev[3][Knot[8, 8]]}
Out[14]=  
{0, 1}
In[15]:=
Kh[Knot[8, 8]][q, t]
Out[15]=  
3           1       1       1      2      1               3

- + 3 q + ----- + ----- + ----- + ---- + --- + 2 q t + 2 q t + q 7 3 5 2 3 2 3 q t

         q  t    q  t    q  t    q  t

    3  2      5  2    5  3      7  3    7  4    9  4    11  5
2 q t + 2 q t + q t + 2 q t + q t + q t + q t