In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Knot[10, 105]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 105]] |
Out[3]= | PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 8, 1, 7], X[16, 5, 17, 6],
X[6, 15, 7, 16], X[10, 17, 11, 18], X[18, 9, 19, 10],
X[8, 14, 9, 13], X[14, 20, 15, 19], X[2, 12, 3, 11]] |
In[4]:= | GaussCode[Knot[10, 105]] |
Out[4]= | GaussCode[1, -10, 2, -1, 4, -5, 3, -8, 7, -6, 10, -2, 8, -9, 5, -4, 6,
-7, 9, -3] |
In[5]:= | BR[Knot[10, 105]] |
Out[5]= | BR[5, {1, 1, -2, 1, 3, 2, 2, -4, -3, 2, -3, -4}] |
In[6]:= | alex = Alexander[Knot[10, 105]][t] |
Out[6]= | -3 8 22 2 3
-29 + t - -- + -- + 22 t - 8 t + t
2 t
t |
In[7]:= | Conway[Knot[10, 105]][z] |
Out[7]= | 2 4 6
1 - z - 2 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 105], Knot[11, NonAlternating, 163]} |
In[9]:= | {KnotDet[Knot[10, 105]], KnotSignature[Knot[10, 105]]} |
Out[9]= | {91, 2} |
In[10]:= | J=Jones[Knot[10, 105]][q] |
Out[10]= | -3 3 7 2 3 4 5 6 7
-11 + q - -- + - + 14 q - 15 q + 15 q - 12 q + 8 q - 4 q + q
2 q
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 105]} |
In[12]:= | A2Invariant[Knot[10, 105]][q] |
Out[12]= | -10 -6 3 2 2 4 6 8 10 12
q - q + -- - -- + 2 q - 3 q + 3 q - 2 q + 2 q + q -
4 2
q q
14 16 18 20 22
2 q + 3 q - 2 q - q + q |
In[13]:= | Kauffman[Knot[10, 105]][a, z] |
Out[13]= | 2 2 2
-2 2 z 3 z 4 z 2 3 z 5 z 4 z
-1 - a - a - -- - --- - --- - 2 a z + 5 z + ---- + ---- + ---- +
5 3 a 6 4 2
a a a a a
3 3 3 3 4 4
2 2 2 z 6 z 19 z 18 z 3 4 z 8 z
3 a z - ---- + ---- + ----- + ----- + 7 a z - z + -- - ---- -
7 5 3 a 8 6
a a a a a
4 4 5 5 5 5
9 z 2 z 2 4 4 z 13 z 33 z 24 z 5
---- + ---- - 3 a z + ---- - ----- - ----- - ----- - 8 a z -
4 2 7 5 3 a
a a a a a
6 6 6 7 7 7
6 8 z 3 z 19 z 2 6 10 z 13 z 6 z 7
7 z + ---- - ---- - ----- + a z + ----- + ----- + ---- + 3 a z +
6 4 2 5 3 a
a a a a a
8 8 9 9
8 7 z 11 z 2 z 2 z
4 z + ---- + ----- + ---- + ----
4 2 3 a
a a a |
In[14]:= | {Vassiliev[2][Knot[10, 105]], Vassiliev[3][Knot[10, 105]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[10, 105]][q, t] |
Out[15]= | 3 1 2 1 5 2 6 5 q
8 q + 7 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
7 4 5 3 3 3 3 2 2 q t t
q t q t q t q t q t
3 5 5 2 7 2 7 3 9 3 9 4
8 q t + 7 q t + 7 q t + 8 q t + 5 q t + 7 q t + 3 q t +
11 4 11 5 13 5 15 6
5 q t + q t + 3 q t + q t |