9 13

From Knot Atlas
Revision as of 19:13, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

9 12.gif

9_12

9 14.gif

9_14

9 13.gif Visit 9 13's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 13's page at Knotilus!

Visit 9 13's page at the original Knot Atlas!

9 13 Quick Notes


9 13 Further Notes and Views

Knot presentations

Planar diagram presentation X6271 X14,6,15,5 X16,8,17,7 X18,10,1,9 X8,18,9,17 X10,16,11,15 X2,14,3,13 X12,4,13,3 X4,12,5,11
Gauss code 1, -7, 8, -9, 2, -1, 3, -5, 4, -6, 9, -8, 7, -2, 6, -3, 5, -4
Dowker-Thistlethwaite code 6 12 14 16 18 4 2 10 8
Conway Notation [3213]

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [3][-14]
Hyperbolic Volume 9.13509
A-Polynomial See Data:9 13/A-polynomial

[edit Notes for 9 13's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 13's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 37, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (7, 18)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 13. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
23         1-1
21        1 1
19       31 -2
17      21  1
15     43   -1
13    32    1
11   24     2
9  23      -1
7  2       2
512        -1
31         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 13]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 13]]
Out[3]=  
PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 8, 17, 7], X[18, 10, 1, 9], 
 X[8, 18, 9, 17], X[10, 16, 11, 15], X[2, 14, 3, 13], X[12, 4, 13, 3], 

X[4, 12, 5, 11]]
In[4]:=
GaussCode[Knot[9, 13]]
Out[4]=  
GaussCode[1, -7, 8, -9, 2, -1, 3, -5, 4, -6, 9, -8, 7, -2, 6, -3, 5, -4]
In[5]:=
BR[Knot[9, 13]]
Out[5]=  
BR[4, {1, 1, 1, 1, 2, -1, 2, 2, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[9, 13]][t]
Out[6]=  
     4    9            2

11 + -- - - - 9 t + 4 t

     2   t
t
In[7]:=
Conway[Knot[9, 13]][z]
Out[7]=  
       2      4
1 + 7 z  + 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 13]}
In[9]:=
{KnotDet[Knot[9, 13]], KnotSignature[Knot[9, 13]]}
Out[9]=  
{37, 4}
In[10]:=
J=Jones[Knot[9, 13]][q]
Out[10]=  
 2      3      4      5      6      7      8      9      10    11
q  - 2 q  + 4 q  - 5 q  + 7 q  - 6 q  + 5 q  - 4 q  + 2 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 13]}
In[12]:=
A2Invariant[Knot[9, 13]][q]
Out[12]=  
 6    8    10      16    18      20    24      28    34
q  - q  + q   + 3 q   + q   + 2 q   - q   - 2 q   - q
In[13]:=
Kauffman[Knot[9, 13]][a, z]
Out[13]=  
                                            2      2      2      2
-10    -8   3    2 z   2 z   3 z   z    2 z    2 z    6 z    8 z

a - a - -- + --- - --- - --- + -- + ---- - ---- + ---- + ---- -

             6    13    11    9     7    12     10      8      6
            a    a     a     a     a    a      a       a      a

    2      3      3      3    3      3      4    4       4      4
 2 z    3 z    2 z    9 z    z    3 z    5 z    z     4 z    7 z
 ---- - ---- + ---- + ---- + -- - ---- - ---- - --- - ---- - ---- + 
   4     13     11      9     7     5     12     10     8      6
  a     a      a       a     a     a     a      a      a      a

  4    5       5      5      5      5      6    6      6      7
 z    z     4 z    9 z    2 z    2 z    2 z    z    3 z    2 z
 -- + --- - ---- - ---- - ---- + ---- + ---- + -- + ---- + ---- + 
  4    13    11      9      7      5     12     8     6     11
 a    a     a       a      a      a     a      a     a     a

    7      7    8     8
 4 z    2 z    z     z
 ---- + ---- + --- + --
   9      7     10    8
a a a a
In[14]:=
{Vassiliev[2][Knot[9, 13]], Vassiliev[3][Knot[9, 13]]}
Out[14]=  
{0, 18}
In[15]:=
Kh[Knot[9, 13]][q, t]
Out[15]=  
 3    5      5        7  2      9  2      9  3      11  3      11  4

q + q + 2 q t + 2 q t + 2 q t + 3 q t + 2 q t + 4 q t +

    13  4      13  5      15  5      15  6      17  6    17  7
 3 q   t  + 2 q   t  + 4 q   t  + 3 q   t  + 2 q   t  + q   t  + 

    19  7    19  8    21  8    23  9
3 q t + q t + q t + q t