9 31

From Knot Atlas
Revision as of 19:13, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

9 30.gif

9_30

9 32.gif

9_32

9 31.gif Visit 9 31's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 31's page at Knotilus!

Visit 9 31's page at the original Knot Atlas!

9 31 Quick Notes


9 31 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X11,1,12,18 X5,13,6,12 X17,7,18,6 X7,14,8,15 X13,16,14,17 X15,8,16,9 X9,2,10,3
Gauss code -1, 9, -2, 1, -4, 5, -6, 8, -9, 2, -3, 4, -7, 6, -8, 7, -5, 3
Dowker-Thistlethwaite code 4 10 12 14 2 18 16 8 6
Conway Notation [2111112]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-2]
Hyperbolic Volume 11.6863
A-Polynomial See Data:9 31/A-polynomial

[edit Notes for 9 31's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 31's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 55, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (2, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 31. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10123χ
5         1-1
3        2 2
1       31 -2
-1      52  3
-3     54   -1
-5    54    1
-7   35     2
-9  35      -2
-11 13       2
-13 3        -3
-151         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 31]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 31]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 18], X[5, 13, 6, 12], 
 X[17, 7, 18, 6], X[7, 14, 8, 15], X[13, 16, 14, 17], X[15, 8, 16, 9], 

X[9, 2, 10, 3]]
In[4]:=
GaussCode[Knot[9, 31]]
Out[4]=  
GaussCode[-1, 9, -2, 1, -4, 5, -6, 8, -9, 2, -3, 4, -7, 6, -8, 7, -5, 3]
In[5]:=
BR[Knot[9, 31]]
Out[5]=  
BR[4, {-1, -1, 2, -1, 2, -3, 2, -3, -3}]
In[6]:=
alex = Alexander[Knot[9, 31]][t]
Out[6]=  
       -3   5    13             2    3

-17 + t - -- + -- + 13 t - 5 t + t

            2   t
t
In[7]:=
Conway[Knot[9, 31]][z]
Out[7]=  
       2    4    6
1 + 2 z  + z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 31], Knot[11, NonAlternating, 11], 
 Knot[11, NonAlternating, 22], Knot[11, NonAlternating, 112], 

Knot[11, NonAlternating, 127]}
In[9]:=
{KnotDet[Knot[9, 31]], KnotSignature[Knot[9, 31]]}
Out[9]=  
{55, -2}
In[10]:=
J=Jones[Knot[9, 31]][q]
Out[10]=  
      -7   4    6    8    10   9    8          2

-5 + q - -- + -- - -- + -- - -- + - + 3 q - q

           6    5    4    3    2   q
q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 31]}
In[12]:=
A2Invariant[Knot[9, 31]][q]
Out[12]=  
 -22    -20    2     -16    2     -12    -10   3     -4   3     2

q - q - --- + q - --- + q + q + -- - q + -- - q +

              18           14                  6          2
             q            q                   q          q

  4    6
q - q
In[13]:=
Kauffman[Knot[9, 31]][a, z]
Out[13]=  
        2      4   z              3        5        2       2  2

-1 - 4 a - 2 a + - + 3 a z + 5 a z + 3 a z + 5 z + 15 a z +

                  a

                         3
     4  2      6  2   2 z         3      3  3      5  3      7  3
 13 a  z  + 3 a  z  - ---- - 3 a z  - 5 a  z  - 8 a  z  - 4 a  z  - 
                       a

                                                 5
    4       2  4       4  4      6  4    8  4   z         5
 7 z  - 21 a  z  - 23 a  z  - 8 a  z  + a  z  + -- - 3 a z  - 
                                                a

    3  5    5  5      7  5      6      2  6       4  6      6  6
 7 a  z  + a  z  + 4 a  z  + 3 z  + 8 a  z  + 11 a  z  + 6 a  z  + 

      7      3  7      5  7    2  8    4  8
3 a z + 7 a z + 4 a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[9, 31]], Vassiliev[3][Knot[9, 31]]}
Out[14]=  
{0, -2}
In[15]:=
Kh[Knot[9, 31]][q, t]
Out[15]=  
4    5     1        3        1        3        3       5       3

-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +

3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3

q q t q t q t q t q t q t q t

   5       5      4      5     2 t              2      3  2    5  3
 ----- + ----- + ---- + ---- + --- + 3 q t + q t  + 2 q  t  + q  t
  7  2    5  2    5      3      q
q t q t q t q t