10 46

From Knot Atlas
Revision as of 19:14, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

10 45.gif

10_45

10 47.gif

10_47

10 46.gif Visit 10 46's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 46's page at Knotilus!

Visit 10 46's page at the original Knot Atlas!

10_46 is also known as the pretzel knot P(5,3,2).


10 46 Further Notes and Views

Knot presentations

Planar diagram presentation X6271 X8493 X2837 X16,10,17,9 X14,5,15,6 X4,15,5,16 X18,12,19,11 X20,14,1,13 X10,18,11,17 X12,20,13,19
Gauss code 1, -3, 2, -6, 5, -1, 3, -2, 4, -9, 7, -10, 8, -5, 6, -4, 9, -7, 10, -8
Dowker-Thistlethwaite code 6 8 14 2 16 18 20 4 10 12
Conway Notation [5,3,2]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [3][-15]
Hyperbolic Volume 7.717
A-Polynomial See Data:10 46/A-polynomial

[edit Notes for 10 46's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3}
Topological 4 genus
Concordance genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4}
Rasmussen s-Invariant -6

[edit Notes for 10 46's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}}
Determinant and Signature { 31, 6 }
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{11}-2 q^{10}+3 q^9-4 q^8+4 q^7-5 q^6+4 q^5-3 q^4+3 q^3-q^2+q}
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (0, -4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -32} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{256}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{544}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 512} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2192}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 10 46. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345678χ
23          11
21         1 -1
19        21 1
17       21  -1
15      22   0
13     32    -1
11    12     -1
9   23      1
7  11       0
5 13        2
3           0
11          1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[10, 46]]
Out[2]=  
10
In[3]:=
PD[Knot[10, 46]]
Out[3]=  
PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[16, 10, 17, 9], 
 X[14, 5, 15, 6], X[4, 15, 5, 16], X[18, 12, 19, 11], 

X[20, 14, 1, 13], X[10, 18, 11, 17], X[12, 20, 13, 19]]
In[4]:=
GaussCode[Knot[10, 46]]
Out[4]=  
GaussCode[1, -3, 2, -6, 5, -1, 3, -2, 4, -9, 7, -10, 8, -5, 6, -4, 9, 
  -7, 10, -8]
In[5]:=
BR[Knot[10, 46]]
Out[5]=  
BR[3, {1, 1, 1, 1, 1, -2, 1, 1, 1, -2}]
In[6]:=
alex = Alexander[Knot[10, 46]][t]
Out[6]=  
      -4   3    4    5            2      3    4

-5 - t + -- - -- + - + 5 t - 4 t + 3 t - t

           3    2   t
t t
In[7]:=
Conway[Knot[10, 46]][z]
Out[7]=  
       4      6    8
1 - 6 z  - 5 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[10, 46], Knot[11, NonAlternating, 60]}
In[9]:=
{KnotDet[Knot[10, 46]], KnotSignature[Knot[10, 46]]}
Out[9]=  
{31, 6}
In[10]:=
J=Jones[Knot[10, 46]][q]
Out[10]=  
     2      3      4      5      6      7      8      9      10    11
q - q  + 3 q  - 3 q  + 4 q  - 5 q  + 4 q  - 4 q  + 3 q  - 2 q   + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[10, 46]}
In[12]:=
A2Invariant[Knot[10, 46]][q]
Out[12]=  
 4    6      8      10    12    14      16    18      20    22    28

q + q + 2 q + 2 q + q + q - 2 q - q - 3 q - q + q +

  32
q
In[13]:=
Kauffman[Knot[10, 46]][a, z]
Out[13]=  
                                         2       2      2      2

3 8 6 2 z 2 z 10 z 6 z z 2 z 2 z 7 z -- + -- + -- + --- - --- - ---- - --- + --- - ---- + ---- - ---- -

8    6    4    11    9      7     5     14    12     10      8

a a a a a a a a a a a

     2       2      3      3      3       3      3      4      4
 29 z    17 z    2 z    7 z    9 z    23 z    5 z    3 z    9 z
 ----- - ----- + ---- - ---- + ---- + ----- + ---- + ---- - ---- + 
   6       4      13     11      9      7       5     12     10
  a       a      a      a       a      a       a     a      a

     4       4       4      5       5       5      5      6       6
 13 z    42 z    17 z    4 z    13 z    12 z    5 z    4 z    12 z
 ----- + ----- + ----- + ---- - ----- - ----- + ---- + ---- - ----- - 
   8       6       4      11      9       7       5     10      8
  a       a       a      a       a       a       a     a       a

     6      6      7    7      7      8      8    8    9    9
 23 z    7 z    4 z    z    5 z    3 z    4 z    z    z    z
 ----- - ---- + ---- - -- - ---- + ---- + ---- + -- + -- + --
   6       4      9     7     5      8      6     4    7    5
a a a a a a a a a a
In[14]:=
{Vassiliev[2][Knot[10, 46]], Vassiliev[3][Knot[10, 46]]}
Out[14]=  
{0, -4}
In[15]:=
Kh[Knot[10, 46]][q, t]
Out[15]=  
                  5
  5    7   q    q     7        9        9  2    11  2      11  3

3 q + q + -- + -- + q t + 2 q t + 3 q t + q t + 2 q t +

            2   t
           t

    13  3      13  4      15  4      15  5      17  5    17  6
 3 q   t  + 2 q   t  + 2 q   t  + 2 q   t  + 2 q   t  + q   t  + 

    19  6    19  7    21  7    23  8
2 q t + q t + q t + q t