10 46
|
|
Visit 10 46's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 46's page at Knotilus! Visit 10 46's page at the original Knot Atlas! 10_46 is also known as the pretzel knot P(5,3,2). |
Knot presentations
Planar diagram presentation | X6271 X8493 X2837 X16,10,17,9 X14,5,15,6 X4,15,5,16 X18,12,19,11 X20,14,1,13 X10,18,11,17 X12,20,13,19 |
Gauss code | 1, -3, 2, -6, 5, -1, 3, -2, 4, -9, 7, -10, 8, -5, 6, -4, 9, -7, 10, -8 |
Dowker-Thistlethwaite code | 6 8 14 2 16 18 20 4 10 12 |
Conway Notation | [5,3,2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 31, 6 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{11}-2 q^{10}+3 q^9-4 q^8+4 q^7-5 q^6+4 q^5-3 q^4+3 q^3-q^2+q} |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^2- q^{-2} +2 q^{-4} +2 q^{-6} -2 q^{-8} + q^{-10} +3 q^{-12} - q^{-14} - q^{-16} +2 q^{-18} - q^{-20} -2 q^{-22} -2 q^{-28} - q^{-30} +2 q^{-32} - q^{-36} +2 q^{-38} + q^{-40} - q^{-42} + q^{-46} -2 q^{-54} + q^{-56} - q^{-60} + q^{-62} } |
3 | |
4 | |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{35}-q^{31}-q^{29}-q^{27}+3 q^{23}+4 q^{21}+q^{19}-2 q^{17}-5 q^{15}-7 q^{13}-2 q^{11}+6 q^9+11 q^7+9 q^5+2 q^3-10 q-16 q^{-1} -12 q^{-3} + q^{-5} +15 q^{-7} +21 q^{-9} +14 q^{-11} -2 q^{-13} -19 q^{-15} -26 q^{-17} -14 q^{-19} +7 q^{-21} +23 q^{-23} +30 q^{-25} +16 q^{-27} -9 q^{-29} -28 q^{-31} -28 q^{-33} -13 q^{-35} +11 q^{-37} +32 q^{-39} +31 q^{-41} +11 q^{-43} -15 q^{-45} -33 q^{-47} -33 q^{-49} -11 q^{-51} +19 q^{-53} +36 q^{-55} +32 q^{-57} +8 q^{-59} -24 q^{-61} -43 q^{-63} -35 q^{-65} - q^{-67} +35 q^{-69} +51 q^{-71} +29 q^{-73} -13 q^{-75} -51 q^{-77} -52 q^{-79} -14 q^{-81} +38 q^{-83} +62 q^{-85} +38 q^{-87} -16 q^{-89} -61 q^{-91} -59 q^{-93} -5 q^{-95} +49 q^{-97} +65 q^{-99} +28 q^{-101} -32 q^{-103} -66 q^{-105} -42 q^{-107} +14 q^{-109} +55 q^{-111} +51 q^{-113} +5 q^{-115} -42 q^{-117} -50 q^{-119} -14 q^{-121} +27 q^{-123} +42 q^{-125} +20 q^{-127} -15 q^{-129} -28 q^{-131} -12 q^{-133} +11 q^{-135} +19 q^{-137} -2 q^{-139} -21 q^{-141} -16 q^{-143} +12 q^{-145} +35 q^{-147} +28 q^{-149} -14 q^{-151} -51 q^{-153} -46 q^{-155} +47 q^{-159} +62 q^{-161} +27 q^{-163} -30 q^{-165} -63 q^{-167} -53 q^{-169} -5 q^{-171} +44 q^{-173} +66 q^{-175} +46 q^{-177} -10 q^{-179} -61 q^{-181} -69 q^{-183} -28 q^{-185} +38 q^{-187} +79 q^{-189} +55 q^{-191} -14 q^{-193} -69 q^{-195} -66 q^{-197} -5 q^{-199} +53 q^{-201} +62 q^{-203} +16 q^{-205} -39 q^{-207} -52 q^{-209} -15 q^{-211} +30 q^{-213} +38 q^{-215} +10 q^{-217} -23 q^{-219} -32 q^{-221} -3 q^{-223} +23 q^{-225} +21 q^{-227} - q^{-229} -18 q^{-231} -15 q^{-233} + q^{-235} +15 q^{-237} +10 q^{-239} -3 q^{-241} -10 q^{-243} -5 q^{-245} +2 q^{-247} +5 q^{-249} +3 q^{-251} - q^{-253} -3 q^{-255} + q^{-259} + q^{-261} - q^{-267} - q^{-273} + q^{-275} } |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-q^{50}-q^{48}-q^{46}+4 q^{40}+4 q^{38}+q^{36}-2 q^{34}-5 q^{32}-6 q^{30}-8 q^{28}+q^{26}+8 q^{24}+13 q^{22}+12 q^{20}+6 q^{18}-4 q^{16}-21 q^{14}-21 q^{12}-16 q^{10}+17 q^6+31 q^4+33 q^2+12-9 q^{-2} -34 q^{-4} -42 q^{-6} -36 q^{-8} -6 q^{-10} +29 q^{-12} +48 q^{-14} +55 q^{-16} +30 q^{-18} -6 q^{-20} -48 q^{-22} -64 q^{-24} -52 q^{-26} -21 q^{-28} +29 q^{-30} +64 q^{-32} +75 q^{-34} +47 q^{-36} +3 q^{-38} -44 q^{-40} -78 q^{-42} -74 q^{-44} -39 q^{-46} +18 q^{-48} +64 q^{-50} +87 q^{-52} +76 q^{-54} +24 q^{-56} -37 q^{-58} -87 q^{-60} -99 q^{-62} -70 q^{-64} -8 q^{-66} +69 q^{-68} +116 q^{-70} +112 q^{-72} +51 q^{-74} -37 q^{-76} -118 q^{-78} -151 q^{-80} -102 q^{-82} +2 q^{-84} +114 q^{-86} +169 q^{-88} +147 q^{-90} +40 q^{-92} -103 q^{-94} -191 q^{-96} -181 q^{-98} -68 q^{-100} +80 q^{-102} +201 q^{-104} +210 q^{-106} +94 q^{-108} -73 q^{-110} -203 q^{-112} -217 q^{-114} -116 q^{-116} +65 q^{-118} +205 q^{-120} +220 q^{-122} +113 q^{-124} -60 q^{-126} -195 q^{-128} -222 q^{-130} -105 q^{-132} +69 q^{-134} +191 q^{-136} +204 q^{-138} +97 q^{-140} -70 q^{-142} -197 q^{-144} -187 q^{-146} -66 q^{-148} +86 q^{-150} +188 q^{-152} +175 q^{-154} +49 q^{-156} -111 q^{-158} -187 q^{-160} -147 q^{-162} -20 q^{-164} +118 q^{-166} +181 q^{-168} +122 q^{-170} -17 q^{-172} -128 q^{-174} -154 q^{-176} -84 q^{-178} +30 q^{-180} +117 q^{-182} +114 q^{-184} +32 q^{-186} -45 q^{-188} -75 q^{-190} -44 q^{-192} +8 q^{-194} +39 q^{-196} +14 q^{-198} -39 q^{-200} -53 q^{-202} -10 q^{-204} +69 q^{-206} +113 q^{-208} +87 q^{-210} -21 q^{-212} -137 q^{-214} -176 q^{-216} -106 q^{-218} +45 q^{-220} +174 q^{-222} +214 q^{-224} +127 q^{-226} -31 q^{-228} -178 q^{-230} -230 q^{-232} -158 q^{-234} -11 q^{-236} +151 q^{-238} +236 q^{-240} +212 q^{-242} +63 q^{-244} -122 q^{-246} -249 q^{-248} -251 q^{-250} -108 q^{-252} +98 q^{-254} +267 q^{-256} +268 q^{-258} +119 q^{-260} -100 q^{-262} -261 q^{-264} -262 q^{-266} -108 q^{-268} +117 q^{-270} +242 q^{-272} +218 q^{-274} +66 q^{-276} -116 q^{-278} -209 q^{-280} -162 q^{-282} -10 q^{-284} +114 q^{-286} +153 q^{-288} +90 q^{-290} -19 q^{-292} -97 q^{-294} -94 q^{-296} -22 q^{-298} +32 q^{-300} +54 q^{-302} +34 q^{-304} -3 q^{-306} -25 q^{-308} -19 q^{-310} +10 q^{-312} +8 q^{-314} - q^{-316} -9 q^{-318} -11 q^{-320} - q^{-322} +10 q^{-324} +21 q^{-326} +3 q^{-328} -12 q^{-330} -14 q^{-332} -7 q^{-334} +4 q^{-336} +9 q^{-338} +11 q^{-340} -2 q^{-342} -7 q^{-344} -5 q^{-346} -2 q^{-348} +4 q^{-350} +2 q^{-352} +3 q^{-354} -2 q^{-356} -2 q^{-358} +3 q^{-364} - q^{-366} - q^{-370} - q^{-376} + q^{-378} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} + q^{-6} + q^{-8} + q^{-10} +3 q^{-12} +3 q^{-14} +2 q^{-16} + q^{-18} +3 q^{-20} + q^{-22} - q^{-24} -2 q^{-26} - q^{-28} -3 q^{-30} -4 q^{-32} -4 q^{-34} -4 q^{-36} -4 q^{-38} -2 q^{-40} + q^{-42} +2 q^{-44} +4 q^{-46} +6 q^{-48} +5 q^{-50} + q^{-52} + q^{-54} -2 q^{-60} - q^{-62} - q^{-64} - q^{-66} -2 q^{-68} - q^{-70} + q^{-76} + q^{-80} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-14} + q^{-16} +3 q^{-18} +5 q^{-20} +7 q^{-22} +9 q^{-24} +11 q^{-26} +10 q^{-28} +8 q^{-30} +3 q^{-32} -3 q^{-34} -10 q^{-36} -16 q^{-38} -21 q^{-40} -19 q^{-42} -16 q^{-44} -9 q^{-46} -3 q^{-48} +5 q^{-50} +12 q^{-52} +12 q^{-54} +11 q^{-56} +11 q^{-58} +9 q^{-60} +2 q^{-62} +2 q^{-64} -3 q^{-68} -4 q^{-70} -2 q^{-72} -3 q^{-74} -4 q^{-76} - q^{-78} + q^{-80} - q^{-82} - q^{-84} +2 q^{-86} + q^{-88} - q^{-90} + q^{-94} } |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-8} +3 q^{-12} - q^{-14} +4 q^{-16} -2 q^{-18} +5 q^{-20} -2 q^{-22} +3 q^{-24} -2 q^{-26} -4 q^{-32} +3 q^{-34} -6 q^{-36} +5 q^{-38} -7 q^{-40} +5 q^{-42} -5 q^{-44} +4 q^{-46} -3 q^{-48} +2 q^{-50} - q^{-54} +2 q^{-56} -2 q^{-58} +2 q^{-60} -2 q^{-62} +3 q^{-64} -2 q^{-66} +2 q^{-68} -2 q^{-70} + q^{-72} - q^{-74} + q^{-76} } |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 46"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 31, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{11}-2 q^{10}+3 q^9-4 q^8+4 q^7-5 q^6+4 q^5-3 q^4+3 q^3-q^2+q} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (0, -4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 10 46. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 46]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 46]] |
Out[3]= | PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[16, 10, 17, 9],X[14, 5, 15, 6], X[4, 15, 5, 16], X[18, 12, 19, 11],X[20, 14, 1, 13], X[10, 18, 11, 17], X[12, 20, 13, 19]] |
In[4]:= | GaussCode[Knot[10, 46]] |
Out[4]= | GaussCode[1, -3, 2, -6, 5, -1, 3, -2, 4, -9, 7, -10, 8, -5, 6, -4, 9, -7, 10, -8] |
In[5]:= | BR[Knot[10, 46]] |
Out[5]= | BR[3, {1, 1, 1, 1, 1, -2, 1, 1, 1, -2}] |
In[6]:= | alex = Alexander[Knot[10, 46]][t] |
Out[6]= | -4 3 4 5 2 3 4 |
In[7]:= | Conway[Knot[10, 46]][z] |
Out[7]= | 4 6 8 1 - 6 z - 5 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 46], Knot[11, NonAlternating, 60]} |
In[9]:= | {KnotDet[Knot[10, 46]], KnotSignature[Knot[10, 46]]} |
Out[9]= | {31, 6} |
In[10]:= | J=Jones[Knot[10, 46]][q] |
Out[10]= | 2 3 4 5 6 7 8 9 10 11 q - q + 3 q - 3 q + 4 q - 5 q + 4 q - 4 q + 3 q - 2 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 46]} |
In[12]:= | A2Invariant[Knot[10, 46]][q] |
Out[12]= | 4 6 8 10 12 14 16 18 20 22 28 |
In[13]:= | Kauffman[Knot[10, 46]][a, z] |
Out[13]= | 2 2 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 46]], Vassiliev[3][Knot[10, 46]]} |
Out[14]= | {0, -4} |
In[15]:= | Kh[Knot[10, 46]][q, t] |
Out[15]= | 55 7 q q 7 9 9 2 11 2 11 3 |